
Using OMNIS Studio

OMNIS Software
August 1998

The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of OMNIS Software.

© OMNIS Software, Inc., and its licensors 1998. All rights reserved.
Portions © Copyright Microsoft Corporation.

OMNIS® is a registered trademark and OMNIS 5™, OMNIS 7™, and OMNIS Studio are trademarks of
OMNIS Software, Inc.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power
Macintosh and PowerPC are trademarks of Apple Computer, Inc.

IBM and AIX is a registered trademark and OS/2 is a trademark of International Business Machines
Corporation.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered
trademarks of Sun Microsystems Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

Acrobat is a trademark of Adobe Systems, Inc.

ORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase
Inc.

INFORMIX is a registered trademark of Informix Software, Inc.

EDA/SQL is a registered trademark of Information Builders, Inc.

CodeWarrior is a trade mark of Metrowerks, Inc.

Other products mentioned are trademarks or registered trademarks of their corporations.

Table of Contents 3

Table of Contents
ABOUT THIS MANUAL...7

CHAPTER 1—INTRODUCTION......................................9

WHAT IS OMNIS STUDIO?..9
OMNIS APPLICATIONS...10
OMNIS OBJECT ORIENTATION ...11

CHAPTER 2—OMNIS TOOLS..19

STARTING OMNIS STUDIO..20
CONTEXT AND VIEW MENUS...22
BROWSER..23
COMPONENT STORE..31
PROPERTY MANAGER..34
NOTATION INSPECTOR...37
INHERITANCE TREE...45
METHOD EDITOR...46
INTERFACE MANAGER...50
CATALOG...52
DATA FILE BROWSER..55
STANDARD MENUS AND TOOLBARS......................................58
GETTING HELP...66
SHORTCUT KEYS AND MOUSE USAGE...................................70

CHAPTER 3—LIBRARIES AND CLASSES..................76

LIBRARIES...76
LIBRARY PROPERTIES AND PREFERENCES.............................78
CLASSES..84
CLASS PROPERTIES..88
DEFAULT CLASSES..91
OMNIS PREFERENCES..94

CHAPTER 4—VARIABLES AND METHODS..............98

DATA TYPES..99
VARIABLES..108
METHODS..118
CONSTRUCT AND DESTRUCT METHODS..............................125
EVENT METHODS..126
INHERITED VARIABLES AND METHODS...............................127

4 Table of Contents

CODE CLASSES..129
CUSTOMIZING THE METHOD EDITOR...................................130

CHAPTER 5—DATA CLASSES....................................132

DATA TYPES..133
SCHEMA CLASSES...134
QUERY CLASSES..136
TABLE CLASSES..138
CREATING SQL CLASSES AUTOMATICALLY139
FILE CLASSES..139
SEARCH CLASSES..142

CHAPTER 6—WINDOW CLASSES.............................144

CREATING WINDOWS USING WIZARDS144
CREATING A NEW WINDOW...152
WINDOW TYPES..153
WINDOW PROPERTIES...155
WINDOW FIELDS AND PROPERTIES......................................158
BACKGROUND OBJECTS..176
EXTERNAL COMPONENTS..178
MODIFYING WINDOWS AND FIELDS.....................................186
WINDOW AND FIELD METHODS...190

CHAPTER 7—MENU CLASSES...................................192

MENU TYPES...192
CREATING MENUS USING WIZARDS.....................................194
CREATING A NEW MENU...197
MENU LINE AND CLASS METHODS......................................199
MENU PROPERTIES..200
MENU ICONS...203
SHORTCUT KEYS...204
HIERARCHICAL MENUS..207
WINDOW MENUS...208
POPUP MENUS...210
CONTEXT MENUS..212
PASSWORDS AND MENU ACCESS...213
STATUS BAR HELP FOR MENUS...215

CHAPTER 8—TOOLBAR CLASSES216

CREATING A NEW TOOLBAR..217
TOOLBAR CONTROLS...218
TOOLBAR PROPERTIES...220
TOOL PROPERTIES...222
TOOL AND CLASS METHODS..226

Table of Contents 5

INSTALLING TOOLBARS...228
DOCKING AREAS...228

CHAPTER 9—REPORT CLASSES...............................230

CREATING REPORTS USING WIZARDS..................................231
CREATING A NEW REPORT..235
REPORT PROPERTIES...237
REPORT FIELD TYPES AND PROPERTIES...............................240
BACKGROUND OBJECTS..245
REPORT SECTIONS...246
SORTING AND SUBTOTALING ...250
SECTION PROPERTIES AND POSITIONING..............................253
PRINTING REPORTS..255
REPORT AND FIELD METHODS...260
REPORT AND PRINTING NOTATION262
LABELS..276
HTML REPORT DEVICE..280
AD HOC REPORTS..285

CHAPTER 10—LISTS AND GRIDS299

TYPES OF LIST AND GRID FIELD ..300
LIST VARIABLES..303
CREATING LIST AND GRID FIELDS305
GETTING DATA FROM A LIST OR GRID FIELD.......................315
LISTS AND LOCAL FIELDS..316
SEARCHING IN LIST AND GRID FIELDS.................................317

CHAPTER 11—INTERNET CLASSES.........................318

CHAPTER 12—ACCESSING YOUR DATABASE329

CONNECTING TO YOUR DATABASE330
ENABLING YOUR CLIENT APPLICATION...............................333
CREATING SQL FORMS...334
PRINTING DATABASE INFORMATION....................................335
VIEWING AND INSERTING DATA ..336
DATA ACCESS WIZARDS ...337
GENERAL TROUBLESHOOTING...341

CHAPTER 13—LIBRARY TOOLS...............................342

COMPONENT LIBRARY...343
WELCOME LIBRARY ..356
ICON EDITOR...357
IMPORTING AND EXPORTING DATA365
CHECKING LIBRARIES..375

6 Table of Contents

RETOKENIZING LIBRARIES...376
PRIVATE LIBRARIES...378
PASSWORDS AND SECURITY ..379
MULTI-LIBRARY PROJECTS..381
LOCALIZING YOUR APPLICATION...381
LOCALIZING OMNIS ...384

CHAPTER 14—VERSION CONTROL.........................388

OPENING THE VCS ..389
SETTING UP A PROJECT..390
USER ADMINISTRATION...397
USING THE VCS ..399
MANAGING COMPONENTS...408
SETTING VCS OPTIONS...413
REPORTS...414

CHAPTER 15—DEPLOYING YOUR APPLICATION415

SERIALIZATION ..415

About This Manual 7

About This Manual
This manual describes how you develop an application using OMNIS Studio, and focuses
on the classes, objects, and tools available in OMNIS Studio. The OMNIS Programming
manual covers more advanced topics, including application design, programming, and
platform specific features. The Using and Programming manuals are also available on the
OMNIS CD in Acrobat PDF format, together with the following manuals:

– OMNIS Studio Conversion
describes how you convert your OMNIS 7 applications to OMNIS Studio and, for the
benefit of OMNIS 7 users, introduces the new features in OMNIS Studio

– OMNIS Graphs
describes the Graph external component supplied with OMNIS

In addition to these manuals, a comprehensive Help system describing the OMNIS
Commands, Functions, Properties, and Methods is available from within the OMNIS
development environment under the Help menu or by pressing F1.

8

Your Notes

What is OMNIS Studio? 9

Chapter 1—Introduction
This chapter presents an overview of OMNIS Studio and describes the objects and
components you need to create an OMNIS application.

What is OMNIS Studio?
OMNIS Studio is a rapid application development (RAD) environment that supports
component-based development and integration as well as providing access to a full range of
databases and Internet services.

OMNIS Studio provides the tools for complete library and component management, and
offers cross-platform development and deployment under Windows and MacOS. You can
extend its capabilities by adding third-party components and development tools, such as
CASE and GUI testing tools.

OMNIS Stud io

Integrated
Deve lopment
Env i ronment

Object-
Orientat ion

Cross-Plat form
Deve lopment

SQL Awareness
and Mult i -

Server support

Library and
Componen t

Managemen t

External
Componen ts

Interface

10 Chapter 1—Introduction

The OMNIS Studio Data Access Manager provides multi-server support via its Data
Access Modules or DAMs, and automatic client-to-server data mapping using SQL-aware
classes.

OMNIS also incorporates many familiar object-oriented features including class reuse,
inheritance, messaging, and data encapsulation that enhance development.

OMNIS Applications
With OMNIS Studio you can create applications to perform almost any task, including
payroll and expense tracking, human resources and administration, healthcare, electronic
banking and commerce. To build an application you need to piece together various building
blocks or components, including

– the OMNIS executable or program

– one or more library files

– DAMs for server database access

– OMNIS data files for local data access

– externals, DLLs, and external components

The OMNIS Executable
The OMNIS executable or program file directs the objects in your application
and provides the Integrated Development Environment, or IDE, in which you
design your application. It also provides the runtime environment in which the
user runs your finished application. Many of the features available to you as the
designer to create, debug, and modify your application are invisible to the user at runtime.

OMNIS Libraries
The main component in your application is the library file. This file contains all
the class definitions that define the data and GUI objects in your application. The
class types provided in OMNIS include window, menu, report, and toolbar
classes.

If you need to access data on a server database, you use OMNIS Software’s OMNIS Studio
Data Access Modules (DAMs) which let you connect to all the leading relational DBMSs
including Oracle, Sybase, Informix, and Microsoft SQL Server. Alternatively, if you need to
store data on your local machine or LAN, you can use the OMNIS relational database,
either directly or using SQL. OMNIS databases are held in files called data files and
OMNIS provides a number of tools that let you create, browse, and modify data files.

OMNIS Object Orientation 11

OMNIS Object Orientation
OMNIS Studio uses many of the concepts and terms from Object-Oriented Programming,
including messaging, inheritance, and code reuse. This section introduces some of these
concepts and describes how you can use them to develop your application using OMNIS.

Libraries and Classes
Developing an OMNIS application is all about creating the right objects and changing how
these objects interact with each other and the end user. An OMNIS library is a complex
object that can contain many different types of data and GUI objects and components
including windows, menus, toolbars, and reports. The definition for each of these objects is
stored in your library as a separate class.

LIBRARY

classes

OMNIS Studio provides several tools that let you create and examine the libraries and
classes in your application. The main tools that let you do this are the Browser and the
Component Store.

The Browser lets you create libraries and classes, examine existing libraries and copy
objects from one library to another. The Component Store lets you create classes and many
other library objects, including window fields and controls, report objects, and external
components.

When you start OMNIS the Browser and Component Store open automatically, ready for
you to start creating libraries and classes.

12 Chapter 1—Introduction

Properties
Every object has certain characteristics that define exactly how it looks and behaves. These
are called its properties. Properties of an object might include its name, type, color, size,
border style, visibility, and so on.

OBJECT

propert ies

Every library has its own set of properties, classes have their own properties, and individual
objects such as fields on a window have properties as well. Some properties are common to
all objects, such as name, and some are unique to a specific type of object.

You can examine and change the properties of any object in OMNIS using the Property
Manager. For example, you can view the properties of your library or a particular class
using the Property Manager. It lists all the properties for the currently selected object and
you can open it from almost anywhere in OMNIS.

Methods
Objects contain methods which are pieces of code that perform some action when you send
the object the appropriate message. For example, window classes contain a method to
construct the class. In this case, when you open the window the construct method is
executed which initializes the window.

OBJECT

propert ies
methods

Objects contain default methods, but you can add your own methods that either add to the
object’s functionality or override its standard behavior. You use the method editor to add
methods to an object.

Your own methods can contain OMNIS commands that define exactly what the method
should do. OMNIS has over 400 commands that do everything from opening a window,
installing a menu, printing a report, to responding to events in your application.

OMNIS Object Orientation 13

You can add methods to most types of class and the objects within the class. For example,
you can add methods to a window and to each of the objects on the window, and you can
add methods to a toolbar class and put methods behind each of its buttons and controls.

Variables
The principal data container in OMNIS is the variable. Most objects can contain variables,
but their scope and the kind of data they can contain depends on the variable type.

OBJECT

propert ies
methods

vars

You can add variables to most types of class. Such class variables are visible only within
that class, and their values are available to all the methods in the class. Also you can add
variables to any method. These are called local variables, and are available only to the
method in which they are defined. You add variables to an object using the method editor.

Instances
An instance is the object you create when you open a class. For example, you create an
instance of a window when you open a window class. When you print a report you create an
instance of a report class, and similarly when you install a menu you create an instance of a
menu class.

C L A S S
propert ies
methods

instance
propert ies
methods

When you open an instance of a class it inherits all the properties, methods, and variables
from the class. In addition to class variables, each instance can contain instance variables;
these are defined in the class using the method editor. You can create multiple instances of
most types of class, which means each instance can have its own set of instance variable
values. For example, you can create multiple instances of the same window class and
display different data values in each separate window instance.

14 Chapter 1—Introduction

Tasks
A task is a runtime container for the objects or instances in your application. Instances of
any class must always be opened in a task. To ensure this, OMNIS provides a startup task
for instances to run in, or you can create your own task. Since instances are owned by the
task they are running in, manipulating the task manipulates all instances owned by the task.
In this way you can hide and show all the instances or close all the current instances
belonging to a particular task.

m e n u
instance stock

report
instance

window
instance

Task ins tance Task ins tance

sales
report

instance

Notation
OMNIS structures its objects in an object tree, or hierarchical arrangement of objects and
groups that contain other objects. To facilitate a system of naming or referring to the objects
in your library, and their properties and methods, OMNIS uses a system called the notation.
You can view the OMNIS object tree and the notation using the Notation Inspector.

In the OMNIS notation all property names start with a dollar sign “$” to distinguish them
from things like the name of your library or class names. Properties are single words
containing only letters or digits. For example, the name of an object is $name, the width of
an object is $width, its text alignment is $align, and so on.

Standard method names also begin with the dollar sign, but are further distinguished from
properties by having parentheses after their name. Therefore the open method for a window
is $open(). You also use the notation to execute a method or to change the properties of an
object, and you can use a notation string anywhere you need to reference a variable or field
name.

As well as properties and methods, the notation includes standard objects and groups that
also start with a dollar sign. Therefore, the top level of the object tree is $root which
contains everything, including your library and its contents. All the menu classes in your
library are stored in the $menus group, all the report classes are contained in the $reports

OMNIS Object Orientation 15

group, all the toolbars are in the $toolbars group, and so on. In a similar way, the objects
created at runtime when you run your application are contained in their own groups: hence
the $imenus and $itoolbars groups contain all the installed menus and toolbars, and
$ireports contains all the current report instances.

To write the full notation for an object you need to include each object and group in the
object tree, separating each object using “.” a dot. If you like, you can consider the notation
for an object as the path to the object within the system of objects in your library, or
OMNIS as a whole. For example, to refer to a window class in your library you would use
the expression

$root.$libs.Libraryname.$windows.Windowname

If you want to refer to a particular object on your window you need to add the $objs group
and the name of the object to this string. Note that libraries are contained in a group called
$libs, windows in one called $windows, and the objects on a window in a group called
$objs, and you need to include these in the notation for an object on a window. However,
when you write notation there are a number of shortcuts that let you reference objects
without always referring right back to the $root object; these are discussed in the
Programming Methods chapter later in this manual.

Messages
The essential components of any Object Oriented Programming system are the objects in
that system and the messages sent to and from those objects. OMNIS is no exception.

OBJECT

"Message"

A message is an instruction to do something to an object, such as open, close, print, or
redraw the object. You send messages to and from the various objects in your application
using the Do command and the notation. A particular message will run the corresponding
method contained in the object. Messages in OMNIS are formatted in the same manner to
the notation, where each message begins with a “$”, and then the name of the message. For
example, you can send a $close() message to a window instance which runs the standard
$close() method for that instance, which will close the instance.

16 Chapter 1—Introduction

"close"
message

window
instance

close
method

You can activate or change object properties in a similar way using the $assign() message.
When you assign to an object you can send a value or list of parameters with the message.
For example, to change the background color of a window instance you would send the
$backcolor.$assign() message with a color value as a parameter.

window
instance

color
property

"assign color"
message

As well as assigning to an object, you can return information from an object using
messages. For example, you could find out the background color of a window instance by
returning the value of its color property. You do this using the notation as well.

OMNIS Object Orientation 17

Events
Any user action that occurs in OMNIS is reported as an event message. The key to creating
an events-based application is in the methods you write to intercept or handle these events.
These methods are called event handling methods and you would normally put them behind
fields and windows, or place them in the tasks in your library.

When the user generates an event, OMNIS sends a message describing the event. Usually
this message is a simple predefined code for the event. Depending on where the event
occurs it is intercepted by an event handling method. For example, if the user clicks on a
field, a simple click event is generated and the event handler for the field is called.

"click"
message

field
instance

event
method

Modify, discard
or pass event?

The event handling method can modify the default action for the event or redirect method
execution to anywhere else in your application. Alternatively, the event handler may discard
the event altogether or pass it on to the next method in the event chain.

Most objects including window fields and classes, toolbar controls, and menu lines contain
a default event handling method called $event(), while window classes and tasks can
contain a method called $control() as a further level of control. These methods contain the
code that handles events passed to the object.

18 Chapter 1—Introduction

Inheritance
When creating a new class, instead of having to set up all its properties and methods you
can derive it from an existing class. The new class is said to be a subclass of the existing
class, which is in turn a superclass. In this way you can create a hierarchy of classes, each
class being a subclass of the one above it in the chain.

"superclass"

CLASS

propert ies
methods

vars

"subclass"

CLASS

propert ies
methods

vars

So what are the advantages of inheritance? The real advantage of inheritance is that a
subclass takes on or inherits all the properties, variables and methods of its superclass. And
in the case of a window, menu and toolbar subclass, it inherits all the fields and objects on
the superclass as well. This saves time and effort when you develop your application, since
you can reuse the objects from the superclass. When you make a change in the superclass,
all its subclasses inherit the change automatically.

In addition to its own inherited properties and methods, you can add methods and any other
objects to the subclass.

You can view the inheritance structure for all the classes in your library using the
Inheritance Tree.

OMNIS Object Orientation 19

Chapter 2—OMNIS Tools
This chapter shows you how to start OMNIS, and introduces the development tools and
standard menus available in OMNIS Studio. The following tools are described in this
chapter.

– Context and View menus
general purpose tools that greatly accelerate development

– Browser
for creating and viewing libraries and classes

– Component Store
for creating classes and other library objects

– Property Manager
for examining and changing the properties of objects in your library

– Notation Inspector
for examining the OMNIS object tree including the contents of your libraries, and
getting the correct notation for an object

– Inheritance Tree
for examining the superclass/subclass structure of your libraries

– Method Editor
for adding variables and methods to classes and objects; also for debugging your
application

– Interface Manager
for displaying public methods for any object in OMNIS Studio

– Catalog
lists all the variables in your library and provides a convenient list of all OMNIS
functions and constants

– Data File Browser
for viewing and managing OMNIS data files

– Standard menus and toolbars
for accessing the IDE and your libraries

20 Chapter 2—OMNIS Tools

Starting OMNIS Studio
Starting OMNIS Studio is easy! Assuming you have carefully followed the installation
instructions provided with the product, you can start OMNIS Studio immediately.

To start OMNIS Studio under Windows 95 and Windows NT 4.0 or later

• Click on the Windows Start button and select the OMNIS Studio menu item

or

• Open Windows Explorer and locate the OMNIS folder

• Double-click on the OMNIS executable icon

To start OMNIS Studio under Windows NT 3.5.1, or Windows 3.1

• Open Program Manager and locate the OMNIS program group

• Double-click on the OMNIS program icon

or

• Open File Manager and locate the OMNIS directory

• Double-click on the OMNIS executable

To load OMNIS Studio under MacOS

• Locate the OMNIS folder and double-click on the OMNIS program icon

Starting OMNIS Studio 21

When you start OMNIS Studio the main menus and IDE toolbars are installed, and the
Browser and Component Store are opened. You will use all these tools to create and
manage libraries and other components in your application.

When you start OMNIS Studio for the first time the Welcome to OMNIS Studio library is
opened. From this you can take a tour of the features in OMNIS Studio, run a brief tutorial,
access the Examples Browser, or create a new library. You may like to take the tour and/or
try the tutorial, otherwise you can create a new library or click on the Cancel button to close
the Welcome library. You can choose not to see the Welcome library the next time you start
OMNIS Studio. If the Welcome library opens and you have already created a library, a
further option lets you open your most recently used library.

Note that you can create your own Welcome library to introduce your own application; this
is described in the Library Tools chapter.

22 Chapter 2—OMNIS Tools

Context and View Menus
A context menu is a useful shortcut when you want to modify an object, or change the
OMNIS development environment. You can open context menus from almost anywhere in
OMNIS by Right-clicking on the object or window, including most of the browsers and
tools described in this chapter; the term “Right-click” is used throughout the OMNIS
manuals and means you click with the right mouse button under Windows, or hold down the
Ctrl key and click the mouse under MacOS. The options in a context menu will vary
depending on the tool or object you click on, but you will always get the options you need
for the current context. For example, you can Right-click on the Browser to open its View
menu.

Browser showing the View context menu

View menus let you change the current view or behavior of a tool. Most of the design tools
in OMNIS have a View menu on their menu bar, including the Browser and Component
Store. You can also Right-click on the background of a tool to open its View menu. When
you change how a tool is displayed you can save its setup using the Save Window Setup
option in the context or View menu for the tool.

Browser 23

Several of the tools let you display help tips or tooltips from their context or View menus.
These are short descriptive messages for the current object that are displayed when you
position the mouse over an object or toolbar control.

Browser
The Browser opens when you start OMNIS. It lets you create new libraries and add new
classes to the current library. It displays all your open libraries or all classes in a particular
library. You can open the Browser from the View menu, or by pressing F2/Cmnd-2.

To open the Browser

• Select the View>>Browser option on the main menu bar

or you can

• Press F2/Cmnd-2

When you start OMNIS the Browser will be empty. At this stage you can either create a
new library or open an existing library. Note that you can also create a new library from the

24 Chapter 2—OMNIS Tools

Welcome library, but this section assumes you have finished with and closed the Welcome
library.

To create a new library

• Select the Library>>New menu option on the Browser menu bar

• Enter a name for the library, including the file extension .LBS, and click on OK

When you name a new library the .LBS file extension is not obligatory but it will help you
distinguish library files from other types of files. Note that the Browser does not display the
file extension. The new library is opened in the Browser.

Each icon in the Browser represents a single object. In this case the current icon represents
the library you have just created.

To open an existing library

• Select the Library>>Open menu option on the Browser menu bar

or

• Press Ctrl/Cmnd-O

Browser 25

or

• Drop its icon onto the Browser from anywhere in your system

The Library menu includes the names of any libraries you have opened recently. You can
select a library name from this menu to open the library. You can remove an item in a
Recent Items list by holding down the Shift key and selecting the item. In addition, if you
select a file from a Recent Items list and the file cannot be opened, OMNIS puts up an OK
message reporting the error, and indicating that the file will be removed from the list.

If you try to open a library created with OMNIS 7 Version 3, it will be converted. If you
want to convert an older library please refer to the OMNIS Studio Conversion manual.

When you create or open more than one library, all the open libraries are shown in the
Browser. You can view the classes in any library currently open in the Browser.

To close a library

• Select the library by clicking on its icon or name

• Select the Library>>Close menu option on the Browser menu bar

or you can

26 Chapter 2—OMNIS Tools

• Right-click on your library

• Select the Close option from the context menu

To view the classes in a library

• Double-click on the library icon

or

• Click on the library icon, and select the View>>Down One Level option on the
Browser menu bar

When you first start OMNIS, the Browser is in multiple-window-mode which means that
when you display the contents of a library a second Browser window is opened containing
the classes in that library. In this mode if you double-click on another library a third
Browser window is opened. Multiple Browser windows are useful if you want to copy
classes from one library into another. To stop multiple Browser windows from opening you

Browser 27

can use the View>>Single Window Mode option on the Browser menu bar. In single-
window-mode you can open one instance of the Browser only, so when you change levels
the single Browser redraws rather than opening another window.

The default view for the Browser is to show Large Icons, but you can change its view using
the View menu on the Browser menu bar or its context menu. You can select Small Icons or
a Details view.

To change the Browser to Details view

• Select the View>>Details menu option on the Browser menu bar

or you can

• Right-click on the background of the Browser, away from your library icon or name

• Select the Details option from the context menu

The Details view lists classes by Name, Type, Superclass, Description, Creation date,
Modified date, and Size. The Details view for libraries shows the Name and Path of each
open library.

28 Chapter 2—OMNIS Tools

You can sort the list of classes by category by clicking on the appropriate column header.
For example, to sort the list by class type you can click on the Type column header. If you
click repeatedly on the same header the sort order of the column switches between
ascending and descending order.

Alternatively you can change the sort order of the list using the View>>Arrange by option
on the Browser menu bar.

You can change the width of the columns in the
Details view of the Browser by changing the width
of the column headers: this applies to any of the
tools that have a Details view. You can Shift-drag
a column header to resize columns to the right;
normally columns to the left are resized.

Browser 29

Hiding or Showing Classes in the Browser
You can hide and show the different types of classes using the Browser Options dialog.

To change the Browser options

• Select the View>>Browser Options menu item on the Browser menu bar, or press
F7/Cmnd-7

You can Include All types of class in the Browser, or click the Exclude All and check only
those classes you want to display. Note that the default is to display all the available classes,
except the system tables.

The status bar on the bottom of the Browser tells you how many classes are displayed and
how many are hidden in the current library.

30 Chapter 2—OMNIS Tools

Alternatively, while the Browser is the top window you can press Shift-Ctrl/Cmnd plus a
letter key to show classes of one particular type. The following keys are available, including
Shift-Ctrl/Cmnd-A to show all classes.

Shift-
Ctrl/Cmnd Displays...

A all classes

W windows only

F files only

R reports only

L searches only

M menus only

O object classes only

J tasks only

C code classes only

T toolbars only

S schemas only

Q query classes only

B tables only

Y system tables only

If a particular type of class is not currently visible in the Browser, OMNIS does not let you
create that type of class. For example, if report classes are not shown in the Browser, you
cannot create report classes, either using the Class>>New>>Report option on the Browser
menu bar or by dragging a report class from the Component Store. In this case the Report
option in the Class>>New menu is grayed out, and report classes will not drop onto the
Browser.

The Browser options are stored for each library. Therefore when you open a library the
options for that library will come into force, and only classes of one type may be shown.

Saving the Browser Setup
If you have changed the way the Browser is displayed and you want to save these changes
for future use you can do this via the View menu on the Browser menu bar.

To save your Browser setup

• Select the View>>Save Window Setup menu option on the Browser menu bar

When you save the window setup all the settings in the View menu will be saved including
the position of the Browser. When you re-open the Browser it will use these settings.

Component Store 31

Component Store
The Component Store is an all-purpose repository for the objects you need to build your
application. It contains class templates and wizards, field and background objects, and
external components.

When you open a library, the Component Store opens automatically. You can create a new
object in your library by dragging the object from the Component Store and dropping it
onto the destination library in the Browser or the appropriate class design window.

To open the Component Store

• Select the View>>Component Store option from the main menu bar

or

• Press F3/Cmnd-3

32 Chapter 2—OMNIS Tools

Usually you won’t need to open the Component Store since it will pop up when you open a
library or any class design screen which uses it, including windows, reports, and toolbars.

When the Browser is the top window the Component Store contains template classes and
wizards, but when you open a class design screen or editor the Component Store will show
the objects or components available for that class type. For example, you open a window in
design mode the Component Store displays window fields and components, or when you
open a toolbar the Component Store shows tools and controls for toolbar classes.

The Component Store toolbar lets you select the category of objects shown in the main
window. The tools available on the toolbar also change depending on context. For example,
when you are creating classes in your library the toolbar shows tools for the different class
types, and when you are designing a window, the toolbar displays tools for the different
field and background objects.

You can change the view of the Component Store using the View menu. When you first
open the Component Store it is shown in Large icons view, but using the View menu you
can change it to Small Icons and you can hide or show the Text. You can experiment with
large and small icons, sizing the Component Store window, and hiding and showing text, to
achieve a palette-like Component Store, such as this

At any time you can save the setup of the Component Store using the View>>Save Window
Setup option on the Component Store menu bar.

You can find general information about creating classes in the Libraries and Classes
chapter. Individual classes are described in subsequent chapters in this manual.

Component Store Classes
When you first open a library the Default
Classes button on the Component Store
toolbar is selected showing a single template
for each of the standard classes in OMNIS
shown as a separate icon. The name of these
classes defaults to “New <class>“.

Component Store 33

In addition to providing templates for the standard classes in OMNIS, the Component Store
contains other templates and wizards for each type of class. Some templates are provided
with OMNIS, but you can alter these or add your own to the Component Store. You can
show the templates for each class by clicking on the appropriate button. You can move the
mouse over each button to pop up a tooltip showing the class type. For example, the
Window Classes button in the Component Store toolbar displays a set of window templates
and wizards, and any other superclass templates currently loaded.

Changing the Default Classes
Under each type of class in the Component Store, the default class is shown on the template
icon. The default class template or wizard is the one shown under the Default Classes button
in the Component Store toolbar, and also the one used when you create a new class using
the Class>>New menu option in the Browser. However, you can change the default
template or wizard for a class.

To change the default template for a class

• In the Component Store toolbar, click on the type of class template you want to change,
for example click on the Window Classes button

• Right-click on the class you want to make the default

• Select the Make Default option from the context menu

For example, under Window Classes you can make a window wizard the default class;
therefore when you use Class>>New>>Window in the Browser the window wizard is called
by default. When you return to the default display by clicking on the Default Classes button,
the new default class is shown in the Component Store.

Adding Objects to the Component Store
You can add new objects to the Component Store by changing the Component Library. The
View>>Show Component Library In Browser menu option in the Component Store lets you
modify the Component Library. This is described in the Library Tools chapter.

34 Chapter 2—OMNIS Tools

Property Manager
The property manager lets you display or change the properties of the currently selected
object. This could be a library, a window or OMNIS itself. The properties that are specific
to each of the OMNIS classes are described in their individual chapters; OMNIS and library
properties, or preferences, are described in the Libraries and Classes chapter.

The Property Manager will normally appear automatically when needed; if it is not visible
you can display it either by selecting the View>>Property Manager menu item from the
main menu bar, by pressing F6/Cmnd-6, or from an object’s context menu. For example,
you can click on your library and the Property Manager displays its properties.

Property Manager 35

Changing Object Properties
You can change the properties of any object in OMNIS using the Property Manager. You
can Right-button click under Windows or Ctrl-click under MacOS on most objects in
OMNIS to open a context menu containing a Properties option. When you select the
Properties option, the Property Manager will open showing the properties of the current
selected object. At other times the Property Manager will popup automatically.

The Property Manager context menu has a ‘Multi-Line Tabs’ option that lets you toggle
between a scrollable, single line tab pane, or a multi-line tab pane. The default depends on
the operating system you are using.

To change a property of an object

• Right-click on the object to open its context menu

• Select the Properties menu item

• Select the property you want to change

• Type in a new value

or, to change a boolean or True/False property

• Select the property you want to change in the Property Manager

• Double-click on the current value to toggle the value

or, to cycle through all possible values

• Select the property you want to change in the Property Manager

• Repeatedly double-click on the property value

or, to select a value with the mouse

• Click on the down arrow in the property value field

• Select a value from the droplist

36 Chapter 2—OMNIS Tools

Sorting Properties in the Property Manager
The properties of an object are shown in the Property Manager in functional order by
default, but you can list them alphabetically using the View>>Sort by Property Name option
in the Property Manager context menu. This manual uses the functional order, but once you
get to know object properties you may like to view them in the Property Manager in
alphabetical order.

To sort properties by name

• Right-click on the Property Manager, away from a property name either at the top next
to the tabs or at the bottom of the Property Manager window

• Select the Sort by Property Name menu option from the context menu

The other options in the Property Manager context menu affect the behavior of the Property
Manager. If set the Hold Updates option stops the Property Manager updating its contents
automatically when you click on another object. For example, you can click on a window
class to show its properties in the Property Manager, select the Hold Updates option, then
click on a field in the window, and the Property Manager still displays the properties of the
window. Most of the time however you’ll want this option turned off so the Property
Manager updates itself automatically.

The Help tips option in the Property Manager context menu displays short descriptive help
messages for each property in the Property Manager. The Show Runtime Properties option
lets you view properties that are normally available in runtime only, that is, properties of an
instance rather than a design class. When runtime properties are visible in the Property
Manager the methods for the instance are also shown. You cannot set runtime properties or
use methods shown in the Property Manager, they are there as a convenient reference when
you are writing code.

Notation Inspector 37

Notation Inspector
The Notation Inspector lets you view the OMNIS object tree from the $root object down. It
is particularly useful for viewing the contents of your library and finding the right notation
for a particular object or group of objects in your library. For example, you can get the
notation for an object on a design or open window using the Notation Search tool on the
Notation Inspector toolbar. When you click on an object or group in the Notation Inspector
the Property Manager will display its properties and methods.

To open the Notation Inspector

• Select the View>>Notation Inspector option on the main menu bar, or press
F4/Cmnd-4

When the Notation Inspector opens it shows $root which contains all the objects in the
OMNIS object tree including all your open libraries and their contents. It also includes all
the objects and groups created at runtime when you run your application. You can expand
each branch of the tree to show the contents of an object or group.

38 Chapter 2—OMNIS Tools

To expand or collapse a node in the Notation Inspector

• Click on the expand or collapse icon, the + or - icon

or you can

• Double-click on an object or group name

When you expand and collapse the tree OMNIS will scroll the Notation Inspector
automatically. You can view all your open libraries in the $libs group, and you can view the
contents of a particular library using the Notation Inspector.

To view the contents of your library

• Click on the expand icon at the $root of the tree, to show the contents of OMNIS

• Click on the expand icon of the $libs group, to show all your open libraries

Notation Inspector 39

• Click on the expand icon for your library, to show the contents of your library

All the different types of class in your library are shown in Notation Inspector within their
respective object group. For example, all the window classes in your library are contained in
the $windows group. Likewise all the toolbar classes are contained in the $toolbars group.
Note that the $classes group contains all the classes in your library. Also note that a group
may be empty if your library does not contain any classes of that type.

To find a class in the Notation Inspector

• Show the contents of your library in the Notation Inspector, as above

• Open the group containing the class you want; for example to find a particular window
class, open the $windows group and click on the window name

The status bar at the bottom of the Notation Inspector shows the notation for the currently
selected object or group of objects.

40 Chapter 2—OMNIS Tools

Having found the object you’re interested in, you can copy its full notation to a calculation
or you can place its notation on the clipboard ready to paste anywhere in your library. For
example, you can drag the item into a calculation field in the method editor.

To copy the notation for an object

• In the Notation Inspector find the object you’re interested in, as above

• Click on the object and press Ctrl/Cmnd-C

• Go to an entry field or Calculation field and press Ctrl/Cmnd-P to paste the complete
notation string

or

• Locate the object you’re interested in

• Drag the object from the Notation Inspector into a calculation field

or to copy the object or group name only

• Hold down the Shift key and drag the object into your calculation field

When you Shift-drag from the Notation Inspector, the object or group name is prefixed with
a dot which is suitable for appending to a notation string you may have already entered into
a calculation field. Note that when the Property Manager displays properties with their $
names, it also lets you drag-copy either complete notation strings or Shift-drag-copy single
property names into calculation fields.

Notation Inspector Toolbar
You can install the Notation Inspector toolbar from its View menu. This
toolbar lets you view the full notation tree, or make the current object the
root or base of the tree. Also the toolbar contains a button to get the
notation for a window, report, or toolbar object. You can pass the mouse over each button
to popup a tooltip if you’re not sure what a button does.

When you have located a particular library in the Notation Inspector you may want to hide
the other objects in OMNIS and make that library the root of the notation tree.

To make a library the root of the notation tree

• Click on $root, to show the contents of OMNIS

• Click on $libs, to show all the open libraries

• Select your library to highlight its name

Notation Inspector 41

• Click on the Make root button on the Notation Inspector toolbar

The Notation Inspector will refresh itself with your library at the root of the tree.

To find the notation for a particular object

• Click on the Notation Search button on the Notation
Inspector toolbar

• Click on the object in your window, report, or toolbar
object

You can get the notation for a window object in design or runtime mode, also report objects
and toolbar objects. The Notation Inspector will refresh itself showing the notation for the
object you clicked on. The object becomes the root of the tree, so you can expand the tree to
view its contents.

42 Chapter 2—OMNIS Tools

Notation Inspector showing the notation for a window
instance and its contents

Notation Inspector showing the notation for a field on
a window

Once you’ve identified the notation for an object in the Notation Inspector, you can copy its
full notation as described above. You can show the whole of the notation tree again by
clicking on the Show Full Notation Tree button on the Notation Inspector toolbar.

You can show helptips for each item in the Notation Inspector. In this context, each helptip
provides the description for each object or group in the Notation Inspector. You can enable
helptips from the Notation Inspector View menu or its context menu.

Notation Inspector 43

Notation Inspector showing the helptip for the $fieldstyles group

Viewing Properties and Methods
You can use the Notation Inspector in conjunction with the Property Manager to view the
properties and methods for an object or group in the object tree.

To view object properties from the Notation Inspector

• Open the Notation Inspector and expand the tree to find the object or group you’re
interested in

• Click on the object or group to popup the Property Manager; if the Property Manager is
already open you may need to press F6/Cmnd-6 to bring it to the top

Note that the properties shown in the Property Manager include the dollar sign; you will see
these only when you view object properties via the Notation Inspector, otherwise properties
are shown with their simple names without the dollar sign.

44 Chapter 2—OMNIS Tools

For object groups you will see their standard method names and parameters, but for other
objects you may need to click on the Methods tab to display their methods. For example, a
window class has the following standard methods

The Notation Inspector displays some properties in the Property Manager as “(Context
sensitive)”. This means that the property is supported for the item, but its value cannot be
displayed in the Property Manager, since it requires a context, for example an executing
method, in which to be evaluated.

Dragging Properties, Methods, and Notation
As already described, you can drag
the full notation for an item from
the Notation Inspector to anywhere
in the method editor. In addition,
you can drag properties and
methods from the Property
Manager to any calculation field in
the method editor, provided the
Property Manager is populated via clicking on an item in the Notation Inspector (in this
case, property names include a dollar sign). In both cases, the full notation string for the
item is dragged (as shown), unless you hold down the Shift key, in which case the object or
property name prefixed with a dot is dragged.

Inheritance Tree 45

Inheritance Tree
The Inheritance Tree shows the superclass/subclass structure of the classes in your libraries.

To view the Inheritance Tree for a class

• Click on a class in the Browser

• Select View>>Inheritance Tree from the main menu bar or press F5/Cmnd-5

or

• Right-click on the class and select Inheritance Tree from its context menu

See the Object Oriented Programming chapter in the OMNIS Programming manual for
information on using inheritance in OMNIS.

46 Chapter 2—OMNIS Tools

Method Editor
You add variables and methods to the objects in your library using the method editor. You
can also debug the methods in your library using the OMNIS debugger, which is an integral
part of the method editor. You can access the method editor in a number of ways, depending
on the type of object you’re working on and where you are in OMNIS.

For further details about adding variables and methods to the objects in your library, see the
Variables and Methods chapter. All aspects of programming OMNIS methods are covered
in the OMNIS Programming manual.

To open the method editor for a class

• Open your library and view its classes in the Browser

• Right-click on the class

• Select the Methods option from the context menu

Method Editor 47

or for window, report, menu, and toolbar classes you can

• Open the design screen for the class from the Browser

• Right-click on the background of the class design screen

• Select the Methods option from the context menu

For example you can Right-click on the background of a window class or on one of its
fields, and select either the Field or Class Methods option from the context menu. For
window and report classes, you can add methods to a single field or to the class itself. For
toolbar classes you can add methods to a Tool and the Class, and for menu classes you can
add methods to a particular menu Line and the Class. Alternatively, when editing a window,
menu, toolbar, or report class, you can press F8/Cmnd-8 to open the class methods, and
Shift-F8/Cmnd-8 to open the field methods assuming a field or data object is selected.

Code, task, table, and object classes contain methods only, so when you modify these
classes you go straight into the method editor. To add methods to these classes you can
double-click on the class name in the Browser.

48 Chapter 2—OMNIS Tools

The method editor has several different areas, each doing a different job. These are

– Menubar and Toolbar
let you add, edit, and execute methods, in addition to debugging the methods in your
application

Method Editor 49

– Variables panes
lets you add variables to the class or method

– Watch variables pane
lets you monitor variable values while debugging

– Method names and Method definition
lets you add methods to the object, lists existing methods for the object, lets you add
the code for a method, or view the code for an existing method

50 Chapter 2—OMNIS Tools

– Command palette
lists all the commands, and the parameters for the current command

Interface Manager
The Interface Manager displays the public methods and properties for window, menu,
toolbar, report, task, table, and object classes. You can view the Interface Manager from
several places in OMNIS, including the Browser, method editor, and from various context
menus.

To view the Interface Manager

• Click on the class in the Browser

• Select Class>>Interface Manager from the Browser menubar

or you can

• Right-click on the class in the Browser and select Interface Manager from the context
menu

or from the method editor

• Open the method editor for the class

• Select View>>Interface Manager from the method editor menubar

Interface Manager 51

For more details about using the Interface Manager, please see the Object Oriented
Programming chapter in the OMNIS Programming manual.

52 Chapter 2—OMNIS Tools

Catalog
The Catalog lists all the variables, schema and query class columns, and file class fields in
your library, in addition to listing all OMNIS functions, constants, event codes, and hash
variables. When you have found an item in the Catalog, you can enter its name into a
calculation field by double-clicking on it or dragging it out of the Catalog.

To open the Catalog

• Select the View>>Catalog option on the main menu bar

or

• You can press F9 under Windows, or Cmnd-9 under MacOS anywhere and at any time
in OMNIS to open the Catalog

The Catalog lists all the variables for the current object including task, class, instance, local,
and parameter variables, and also event parameters. For example, if you are working in a
code class you can click on Class under the Variables tab and the Catalog will display all
the class variables for that code class. Alternatively, if you are working in a window class
the Catalog will show the class and instance variables for that window class. When you
select a particular method in the method editor, the Catalog will list the local and parameter
variables for that method.

The Catalog also shows all the file classes in the current library. When you click on a file
class name, in the left column under the Variables tab, the Catalog will display all the fields
for that file class, in the right column.

Catalog 53

To select a variable from the Catalog

• Open a method editor for the class and go to where you want to enter a class variable
name, in a Calculate command for example

• Open the Catalog by pressing F9/Cmnd-9

• Click on the Variables tab

• Select Class in the left column of the Variables pane

• Either Double-click on the name of the class variable to enter it into the edit field, or
drag it from the Catalog and drop it on the field; note that you cannot use Copy and
Paste from the Catalog

The name of the variable will be entered at the current position of the cursor. You can do
this wherever you need to enter the name of a variable or field. If you are entering a comma-
separated list of parameters in a method or command, you can hold down the Shift key to
append a comma to the item.

54 Chapter 2—OMNIS Tools

If you want to know the current value of a variable or field you can Right-click on its name
in the Catalog. The Variable popup menu will show the variable name, its value, and type.

You can popup this menu wherever the variable name appears in OMNIS, you don’t have to
be in the Catalog. The first option in this menu opens the Variable value window in which
you can view and change the current value of the variable or field, unless the variable is a
Binary or an Item reference, in the latter case the option opens the Notation Inspector.

Data File Browser 55

Data File Browser
You store local data in an OMNIS data file. The Data File Browser lets you create new data
files, open or close existing data files, and make a particular data file the current data file. It
also lets you check and reorganize your data, and create, rename, or delete data file slots.

To open the Data File Browser

• Select the View>>Data File Browser option on the main menu bar

The Datafile menu lets you create new data files, open an existing one, or close the
currently selected data file. Also it contains options for checking your data; for details about
these features see the OMNIS Data Files chapter in the OMNIS Programming manual.

The View menu lets you change how the Data File Browser is displayed and lets you save
the current window setup. It also lets you hide or show the menu bar, toolbar, and status bar.
The status bar displays short help messages for the options in the Data File Browser. Like
the standard Browser you can Right-click on the Data File Browser to open the View
context menu.

56 Chapter 2—OMNIS Tools

To create a new data file

• Select the Datafile>>New option from the Data File Browser menu bar

• Enter a name for the new data file, including the file extension .DF1, and click OK

To open an existing data file

• Select the Datafile>>Open option from the Data File Browser menu bar

• Locate the data file in the Open Data File dialog and click OK

or

• Drop the data file’s icon on to the Data File Browser from anywhere in your system

or

• If the data file has been opened recently, you can select it off the list of recently opened
datafiles on the Datafile menu

You use the View menu in the Data File Browser to view the slots in an open data file.

Data File Browser 57

To view the data slots in an open data file

• Switch the Data File Browser to Details view, and click on the data file you want to
examine

• Select the View>>Down One Level option in the Data File Browser

• Click on the Data Slots, and select the View>>Down One Level option again

Generally there should be one slot for every file class in your library. The Data File
Browser shows you the number of fields and records (or rows) for each slot. You can print a
listing of all data slots in an open data file by selecting File>>Print. The Slot menu lets you
manipulate individual slots.

Reorganizing, Checking, and Updating data files is discussed in detail in the OMNIS Data
Files chapter in the OMNIS Programming manual.

58 Chapter 2—OMNIS Tools

Standard Menus and Toolbars
This section describes the standard File, Edit, View, Tools, Window, and Help menus. It
also describes the IDE toolbars and desktop mode.

File menu

The File menu lets you save the current class design window, and set the current print
destination. It also lets you change the desktop mode.

The Save <Class> option (Ctrl/Cmnd-S) saves the class you are currently working on. If a
class design window is not currently selected this option is grayed out. The Revert <Class>
option rolls back any changes you have made to the class you are currently working on.

The Print Destination (Shift-Ctrl/Cmnd-P) dialog lets you set the destination of the current
output. Reports are sent to the Screen by default, but you can choose another destination
from this dialog. For further information, see the Report Classes chapter.

The Page Setup option opens the standard Print Setup dialog for the current OS.

The Print option (Ctrl/Cmnd-P) prints the current object if appropriate: for example, a
report class, or when you are working in the method editor, it prints the currently selected
method or methods.

The Print Report from Disk (Alt-P/Option-Cmnd-P) option lets you select and print a
report previously stored on disk.

The Desktop submenu lets you select the current mode for the IDE
from the three modes Design, Runtime and Combined. In Design
mode the standard menus, such as File, Edit, View, and Tools, plus
the IDE toolbars are visible. In Runtime mode all these are hidden and
only user menus, data entry windows and toolbars defined in your
library are visible. Also in runtime mode there is a cut-down version of the File and Edit

Standard Menus and Toolbars 59

menus on the main menu bar. Being able to switch to runtime mode lets you see exactly
how your application will look when the user runs it. In Combined mode (the default) all
design and user menus, windows, dialogs, and toolbars are visible. When you select the
Runtime option, the Desktop toolbar is installed so you can get back to the Combined mode.

The Exit/Quit option closes OMNIS and any open libraries saving all classes.

Edit menu

The Undo option (Ctrl/Cmnd-Z) reverses the last cut, paste, move, or text/graphic edit. For
example, if you have just moved an object the undo option will read Undo Move.

The Cut option (Ctrl/Cmnd-X) removes the selected object(s) on the window or report, or
item of data, to the clipboard. The OMNIS clipboard format is not compatible with other
applications, but text and graphics can be cut and pasted during window or report design
and during data entry.

The Copy option (Ctrl/Cmnd-C) copies the selected object(s) or text to the clipboard; the
source remains unchanged.

The Paste option (Ctrl/Cmnd-V) takes information stored on the clipboard, whether an
object or an item of data, and places it where you are currently working. This option is
grayed out when the clipboard is empty or when the data on the clipboard is not compatible
with where you are working.

60 Chapter 2—OMNIS Tools

The Clear option (Del) removes the selected screen object(s) or item of data; the
information is not stored on the clipboard.

The Select All option (Ctrl/Cmnd-A) highlights the whole of the current window, field or
text edit area; the selected area can then be cut or copied in the usual way.

The Paste From File option lets you read in text or pictures in Windows bitmap (.BMP),
metafile (.WMF) or MacOS PICT format. You can paste text or pictures into fields on
windows and reports, or the background of a window or report.

DDE and OLE (under Windows only)
The Paste Link option places a DDE link from Excel or Word, for example, in the current
field. The Remove DDE Link option deletes the link in the current field. The Links option
applies to OLE only, and displays a list of current links from which you can choose a link.
The Object option shows the name of the current linked or embedded object. The Insert
Object option inserts an embedded object into the current field.

Find and Replace
The Find & Replace tool lets you search through a class or library, or a number of classes or
libraries, to find a particular text string. You can selectively replace occurrences of an item
or replace all items. The Find And Replace option under the Edit menu (or Ctrl/Cmnd-F)
opens the Find & Replace dialog.

You enter the item you want to find in the Find entry box, and check the Match Case and/or
Match Whole Words Only boxes as appropriate.

Standard Menus and Toolbars 61

On the Classes tab you can select the libraries and classes in which you want to perform the
find and replace. For a single library you can select some or all of the classes in the library.
File classes appear at the top of the list and are searched first. If you select more than one
library under the Classes tab, all classes in all selected libraries are searched. You can also
choose to search just all the classes in a particular class type.

If you click on the Find First button OMNIS will jump to the first occurrence of the text
string in your selected classes or libraries. For example, if the specified item is found in a
method OMNIS will open the class containing the method with the found item highlighted.
Find Next will jump to the next occurrence of the text string, and so on. The Find All button
opens the Find log and finds all occurrences of the specified item in all the classes or
libraries you selected.

If you click on the Replace button OMNIS will find and replace the first occurrence of the
specified item, or Replace All will find and replace all occurrences of the item. If you have
previously performed a find all, you can select particular lines in the log, check the Replace
All In Selected Log Lines Only check box, and click on the Replace button to replace the
selected references only.

You can interrupt a find and replace operation at any time by pressing Ctrl-Break under
Windows, or Cmnd-. under MacOS. When you perform a find and replace all, OMNIS
opens the Find And Replace Log.

The first column in the log lists the class containing the found item. The second column tells
you the Type of object, such as a method or property, and the third column contains the
actual data. You can double-click on a line in the log to jump to the data.

When you rename certain objects in your library, OMNIS will replace all references to the
object automatically. For example, if you rename a class variable in the method editor

62 Chapter 2—OMNIS Tools

OMNIS will replace all references to the variable within the class automatically. However if
you try to rename most other types of object, such as renaming a class in the Browser,
OMNIS will prompt you to find and replace references to the object. If you answer Yes to
the prompt, OMNIS will open the Find & Replace tool and the Find log which lets you
monitor the find and replace, or control whether or not certain references are replaced.

View menu

The View menu on the main OMNIS menu bar lets you access all the main development
tools such as the Browser and Component Store. For a description of individual tools, see
earlier in this chapter. Many of the OMNIS tools also have View menus that let you change
the view or behavior of the tools.

The Browser option (F2/Cmnd-2) opens the Browser. The Browser lets you create and
examine libraries and classes. If the Browser is already open and in Single Window Mode
this option will bring it to the top. If the Browser allows multiple copies of itself, this option
opens the initial Browser displaying the libraries. When you open the Browser the
Component Store will also open if necessary.

The Component Store option (F3/Cmnd-3) opens the Component Store which contains
class templates, field and background objects, and external components. If the Component
Store is already open this option will bring it to the top.

The Notation Inspector option (F4/Cmnd-4) opens the Notation Inspector which lets you
view the complete OMNIS notation tree. If the Notation Inspector is already open and in
Single Window Mode this option will bring it to the top. If the Notation Inspector allows
multiple copies of itself, this option opens a new instance of the Notation Inspector. When
you open the Notation Inspector the Property Manager will also open.

Standard Menus and Toolbars 63

The Inheritance Tree option (F5/Cmnd-5) opens the Inheritance Tree which lets you view
the inheritance or superclass/subclass hierarchy in the current library. If you select a class in
the Browser and open the Inheritance Tree it shows the inheritance for that class.

The Property Manager option (F6/Cmnd-6) opens the Property Manager which lets you
view or change the properties of an object. If the Property Manager is already open this
option will bring it to the top.

The Catalog option (F9/Cmnd-9) opens the Catalog which lists all the field names and
variables in your library, together with the functions, constants and event messages. If the
Catalog is already open this option will bring it to the top.

The Data File Browser option opens the Data File Browser which lets you create or
examine data files. If the Data File Browser is already open this option will bring it to the
top.

The Toolbars option opens the IDE Toolbar dialog which lets you install or remove the
Standard, View, Tools and Desktop toolbars; all of these menus are installed in the top
docking at Startup. The toolbars provide some or all of the options in their respective
menus. You can drag a toolbar out of its docking area, and drop it onto the left, right, or
bottom docking area. You can Right-click on a docking area to show the text for the
toolbar(s) currently installed in the docking area.

When you pass the mouse over a particular toolbar button, a tooltip pops up showing you
the function of the tool (as shown below on the standard toolbar).

The Standard toolbar duplicates
the options on the File menu

The View toolbar duplicates the
options on the View menu

The Tools toolbar duplicates the
options on the Tools menu

The Desktop toolbar duplicates
the options on the File>>Desktop
submenu

The remainder of the View menu shows all the classes you have recently modified. You can
select a class name from this list to open the design window for that class. You can also
open or instantiate a class from this list, that is, you can open a window, print a report,
install a menu or toolbar. For example, to open a window hold down Shift and select the
window class name from the View menu.

64 Chapter 2—OMNIS Tools

Tools menu

The Tools menu gives you access to various OMNIS development tools.

The Version Control System option accesses the OMNIS VCS which enables you to
manage your development process. It is described in the Version Control chapter.

The SQL Browser lets you access and maintain your proprietary databases such as Oracle,
Sybase, and Informix. You can also access OMNIS data files using OMNIS SQL via the
SQL Object Browser. The SQL Browser is discussed in detail in a later chapter.

The Method Checker lets you check your methods for a range of syntactical errors. It is
described in the OMNIS Programming manual.

The Adhoc Reports option installs the Reports menu on the main OMNIS menubar. The
Ad hoc report tool lets you generate reports from your server or OMNIS database.

The Examples Browser contains a set of examples that demonstrate various OMNIS
features. Each example has its own library, which you can examine and re-use. The
Libraries tab on the Browser contains all the example libraries, including Extcomp.lbs
which shows you external components and Omnispim.lbs which is a demo PIM application.

The Help Project Manager lets you build help into your own libraries for the benefit of
your own users. It is described under Context Help in the Extending OMNIS chapter in the
Omnis Programming manual.

The Export Data option lets you export data from an OMNIS data file using a number of
different data formats. The Import Data option lets you import data into a data file from an

Standard Menus and Toolbars 65

existing export file or text file from another application. For further details about importing
and exporting data see the Library Tools chapter.

The Icon Editor option opens the Icon Editor which lets you add your own icons to
OMNIS. It is described in the Library Tools chapter.

The Trace Log option displays the trace log which is a record of the operations and
commands you have carried out. See the Debugging Methods chapter in the OMNIS
Programming manual for further details.

The Options/Preferences menu item displays the OMNIS preferences in the Property
Manager. These preferences affect all libraries and OMNIS as a whole, and are described in
the next chapter.

The Change Serial Number option lets you re-serialize your copy of OMNIS Studio.
Serialization is covered in a later chapter.

Window menu

The Close Top (Ctrl/Cmnd-W) option closes the top window; the shortcut key is very
useful in design mode when you’re opening and closing many design windows and method
editors. If the current top window is a class design window all changes are saved.

The Close Other option closes all windows other than the top one. All changes made to
class design windows are saved.

The Close All option closes all the windows currently open on the screen. All changes made
to class design windows are saved.

The Print Top option prints the top window to the current print destination. For example, if
the Browser is the top window this option prints the Browser window; if a window design
screen is the top window this option prints the window showing its fields and objects.

The Window menu expands to list the first nine windows currently open on your screen. To
switch to a particular window, select the corresponding line in the Window menu.

The Windows option at the foot of the Window menu opens a dialog containing all the
windows currently open on your screen. You can double-click on a window name to bring it
to the top.

66 Chapter 2—OMNIS Tools

Getting Help

In design mode, OMNIS provides many different types of help: tooltips and helptips over
toolbar controls and the main browsers and editors; help text for the main menus shown in
the status bar at the bottom of the OMNIS application window; and a fully context-sensitive
Help system. The Help menu gives you access to the latter.

Context-Sensitive Help
The OMNIS Help system contains basic information about how you design applications
plus a complete reference for the OMNIS commands, functions, events, properties and
methods, and so on.

To get help

• Select OMNIS Help Topics from the Help menu

or, to get help for the current editor or selected command

• Press F1 under Windows, or for MacOS either F1 or the Help shortcut key; if the
object you select has no help topic, the Search pane is loaded

For example, you can select the Do command in the method editor and press F1. The Help
window opens at the Topic pane showing help for the Do command.

Getting Help 67

The OMNIS Help window has four panes.

Contents
The Contents pane displays help topics organized by category in a hierarchical list.

• To open or close a book icon, double-click the icon or name, or click on the expand
icon

• To view a topic, double-click the topic icon or name

Index
The Index pane displays help topics in alphabetical order. Most objects including
commands and functions are listed by topic name.

• To view a topic, double-click the topic name

You can click in the list and type the beginning of a topic name to search for it. OMNIS will
highlight the topic which begins with the text you typed. To clear the current search press
the backspace key. If the first character is a '*' OMNIS will highlight any topic which
contains the text following the *. For example, if you type '*schema', OMNIS will jump to
the first topic containing the word 'schema'. You can press the '+' (plus) and '-' (minus) keys
to go to the next or previous matching topic.

68 Chapter 2—OMNIS Tools

Search
The Search pane displays a complete list of words contained in the OMNIS Help. If you
have a particular word or words in mind this is the place to go.

• To search the list, type the word or words separated by spaces in the entry box at the
top of the pane

As you type, OMNIS jumps to the nearest matching word in the word list, and the topics
found list shows the topics which contain the word or, for multiple words, all of the words
you entered.

• To view a topic, double-click the topic in the topics found list

Topic
The Topic pane displays the help topic in a Web Browser ActiveX object. Note that if you
don't have a suitable Browser object installed on your system, help is displayed in a separate
Browser window and the Topic pane is hidden.

The Back and Forward buttons let you navigate through the topics which you have already
visited. The Print button lets you print the current topic to the printer. The Copy button lets
you copy the selected text to the clipboard. Note that some of these buttons are not
supported in some versions of the Browser.

The Bookmarks menu lets you add, organize, and pick your topics using bookmarks. You
can add links to specific help pages in the OMNIS Help, or any page on a website.

The Bookmarks menu contains a few links to the OMNIS website. WARNING: Note that
bookmarks to help pages contain the full address of the topic. If you then move your help
folder to another location, these addresses will become invalid.

Getting Help 69

What’s This? Help
OMNIS also provides ‘What’s This?’ help. You can get What’s This? help in a number of
ways. For example, you can select What’s This? from the Help menu, or click on the ?
button on the title bar of the top window, if it has one, then click on the object.

To get What’s This? help

• Select What’s This? from the Help menu

or

• Click on the What's This? button on the main OMNIS toolbar

or

• Click on the ? button on the title bar of the top window, if it has
one

or you can

• Press Shift-F1 under Windows, or Cmnd-Shift-? under MacOS

A question mark is added to the pointer.

• Click on the object you want help for

The keyboard is disabled while the help cursor is displayed, but you can quit help mode by
pressing Escape/Cmnd-period.

Under Windows, the Help menu contains an About option which opens the About OMNIS
window showing your name, serial number, and the current version number. This option is
available on the Apple menu under MacOS.

70 Chapter 2—OMNIS Tools

Shortcut Keys and Mouse Usage
This section lists some useful shortcut keys and mouse usage that you can use to speed up
development. Keyboard commands for the standard OMNIS menu options are shown in the
menus and will vary across the different platforms.

The usage described below applies to both Windows and MacOS unless indicated. In
general, the Ctrl key under Windows corresponds to the Cmnd key under MacOS, while
F[number] keys under Windows correspond to Cmnd+[number] under MacOS. For
example, F9 corresponds to Cmnd+9, which opens the Catalog.

Note that the term “Right-click” is used throughout the OMNIS manuals and means you
click with the right mouse button under Windows, or hold down the Ctrl key and click the
mouse under MacOS.

Launching OMNIS & Opening Libraries
Action

Launch OMNIS Double-click on the OMNIS icon

Launch OMNIS and open a library Double-click on the Library icon

Open a library (the Browser must be
open)

Ctrl/Cmnd-O, or
Library>>Open in Browser, or
Drop the library’s icon onto the Browser
from anywhere in your system

Open library but do not run Startup task Hold down Alt and
open library

Hold down Option
and open library

Close the selected library Library>>Close in Browser

Shortcut Keys and Mouse Usage 71

OMNIS Tools
Action

Open the Browser F2 Cmnd-2

Open the Component Store F3 Cmnd-3

Open the Notation Inspector F4 Cmnd-4

Open the Inheritance Tree F5 Cmnd-5

Open the Property Manager F6 Cmnd-6

Open the Browser Options F7 Cmnd-7

Open the Catalog F9 Cmnd-9

Open Find and Replace Ctrl-F Cmnd-F

General
Action

Save the current class Ctrl+S Cmnd-S

Open the Print Destination dialog Shift-Ctrl-P Shift-Cmnd-P

Print the current selected object (report,
method, field, or class); e.g. prints complete
list of properties and methods for a class

Ctrl-P Cmnd-P

Close the top window Ctrl-W Cmnd-W

Instantiate a class, e.g. open a window, print
a report, install a menu or toolbar

Shift-select class in View menu

Interrupt current processing, such as method
execution, or report printing

Ctrl+Break Cmnd-.
(period)

Exit/Quit OMNIS Alt+F4 Cmnd-Q

72 Chapter 2—OMNIS Tools

Help
Action

Get help on currently selected item F1

Get ‘What’s This?’ cursor, then click on
object to get help

Shift-F1

Window and Report Design
Action

Switch between design and open window
to test the window

Ctrl+T Cmnd-T

Make an exact square; or circle; or a line
at an angle of 0, 45 or 90 degrees

Ctrl-drag Cmnd-drag

Duplicate a selected object Ctrl-drag Option-drag

Select multiple objects for moving,
grouping, locking, or cutting and pasting

Shift-click

Select all the objects on a window or
report

Ctrl+A Cmnd-A

Lock cursor movement to X/Y direction
when sizing or moving object(s)

Shift-drag

Open the specified class or method editor
for the current class

F8 Cmnd-8

Shortcut Keys and Mouse Usage 73

Moving and Sizing Objects
Action

Move object by one pixel, or by grid
amount if grid is enabled

Å, Æ, Ç, È

Move object by a greater amount; uses
the current grid setting*

Shift-Å, Æ, Ç, È

Size an object by one pixel on its right
or bottom edge

Ctrl+Å, Æ

Ctrl+Ç, È

Cmnd-Å, Æ

Cmnd-Ç, È

Size an object by a larger amount on its
right or bottom edge; uses the current
grid setting*

Shift-Ctrl+Å, Æ

Shift-Ctrl+Ç, È

Shift-Cmnd-Å, Æ

Shift-Cmnd-Ç, È

* Uses current window horzgrid and vertgrid properties regardless of the status of the
showgrid, sizetogrid, aligntogrid properties.

List and Grid Fields
Action

Select multiple non-consecutive lines Ctrl-click Cmnd-click

Deselect selected line Ctrl-click Cmnd-click

Select multiple consecutive lines Shift-click

Deselect all lines (user-defined lists
only)

Click on white space at end of list

The lists key usage applies to most built-in OMNIS lists, as well as your own lists.

74 Chapter 2—OMNIS Tools

Container Fields
Container fields are window fields that contain other fields, such as complex grids.

Action

To select an object in a selected
container field

Ctrl/Cmnd-click on object

To select all objects in a container
field

First select all objects on the window using
Ctrl/Cmnd-A, then Ctrl/Cmnd-click inside one
of the objects inside the container field

To drag select a number of objects
inside a container field

Ctrl/Cmnd & drag around objects inside the
container field

To copy a container field, including
its internal fields

Ctrl/Option-drag on empty part of container
field

Property Manager
Action

Open droplist or dialog in Property Manager Ctrl/Cmnd-Down arrow, Return to
confirm choice

To toggle value of property in the Property
Manager, e.g. to toggle true/false value or
cycle through multiple values

Double-click on value

Shortcut Keys and Mouse Usage 75

Method Editor and Debugger
Action

Set a go point on a method line Double-click

Set a breakpoint Ctrl+Shift+B Cmnd-Shift-B

Set a one-time breakpoint Ctrl+Shift+O Cmnd-Shift-O

Clear breakpoints Ctrl+Shift+C Cmnd-Shift-C

Clear field breakpoints Ctrl+Shift+F Cmnd-Shift-F

Stop debugger during execution Ctrl-Break Cmnd-period

Display the variable context menu for
variable or field

Right-click on
variable or field

Ctrl-click on
variable or field

Expand calculation/text box in calculation
box

Ctrl+U Cmnd-U

Comment selected method line(s)
Uncomment selected method line(s)

Ctrl+;
Ctrl+'

Cmnd-;
Cmnd-'

Add new line below current line in method Ctrl+N Cmnd-N

Insert line above current line in method Ctrl+I Cmnd-I

Open the window or report design screen for
the current method or method(s)

F3 Cmnd-3

Open the method editor for a custom menu
installed on menu bar

Shift-select menu option

Wild card when typing commands, for
example, typing o*w finds the Open window
instance command

* character

Find next or previous line in list when used
with search string, for example, *cur+, +,...
finds all strings containing "current"

+ or - keys

76 Chapter 3—Libraries and Classes

Chapter 3—Libraries and
Classes

This chapter introduces OMNIS libraries and describes how you create them. It describes
how to create classes, the main components of library files and also includes a description
of OMNIS preferences, library preferences and system tables.

Libraries
The main job of application design is to create the objects that define the data structures,
data entry windows, reports, pulldown menus, and other user interface elements in your
application. These objects are defined as classes and are stored in your library file.

You can create many different types of class in your library. You can create classes either
from the Browser or by dragging templates from the Component Store. The Component
Store contains a number of templates and wizards that you can use to create classes.

Each library file contains a number of system tables and preferences that control the
behavior of your library and its contents. A library has certain properties too, which you can
examine and change using the Property Manager.

You can create and open any number of library files and each library can contain any
number of classes. In fact you may want to split your whole application into one or more
libraries and store different types of objects in different libraries. Alternatively, you can
develop your classes, check them into the OMNIS VCS and put them into a library file
when you build your final application.

Libraries 77

To create a new library

• Start OMNIS and open the Browser from the View menu, or by pressing F2/Cmnd-2

• Select the Library>>New menu option on the Browser menu bar

• Enter a name for the new library in the New Library dialog, including the file extension
.LBS, and click on OK

When you name a new library you can use the file naming standards for the current
operating system. The .LBS file extension is not obligatory, but it will help you distinguish
library files from other types of file. The new library is opened in the Browser and shown as
a single icon in icon view, or as a single line in details view.

To open an existing library

• Select the Library>>Open menu option on the Browser menu bar

or

• When the Browser is on top, press Ctrl/Cmnd-O

78 Chapter 3—Libraries and Classes

or if you’ve opened the library before

• Select the library name from the foot of the Library menu in the Browser

or you can

• Drag a library icon onto the Browser from anywhere in your system

If you try to open a library created with OMNIS 7 Version 3.x, the library will be converted
irreversibly. If you want to convert an older library please refer to the OMNIS Studio
Conversion manual.

To close a library

• Select the library by clicking on its icon or name

• Select the Library>>Close menu option on the Browser menu bar

Library Properties and Preferences
This section describes the properties of a library and the preferences you can set for each
library. See also OMNIS Preferences at the end of this chapter.

You use the Property Manager to display or change the properties of the current object. In
the context of this chapter, you can use it to view and change the properties and preferences
of a library.

To view the properties of a library

• Open your library in the Browser

• Select the library icon or name

• Select the View>>Properties menu item from the Browser menubar

or you can

• Right-click on the library icon or name in the Browser

• Select the Properties option from the library context menu

Library Properties and Preferences 79

The options in the library context menu refer to that particular library. You can use it to
close the library, save it, view its contents (Down One Level), Check, Retokenize, or make
the library Private: the latter options are described later in this manual. You can also open
the External Components Browser and check the library into the OMNIS VCS from the
Library context menu; these too are described later in this manual.

80 Chapter 3—Libraries and Classes

The Property Manager opens showing the properties of the current library.
These are:

name the simple name of the library less the .LBS extension

shared if true the library file is open in shared mode; set this to false if
you are the only user

extension if true the library is an extension library; an extension library
placed in the Startup folder is loaded automatically

pathname the path name of the library file on disk; you cannot change this

disksize total disk size of the library file, in bytes

freesize estimated free size in the library file, in bytes; you cannot
change this

userlevel returns the current user number; 0 for master user, or 1 to 8

ignoreexternal if true you can access a class in another library regardless of the
library’s external status

isprivate if true the library is private to the current task

vcsbuilddate the date the library was last built from the VCS, if applicable

vcsbuildersname the person who last built the library from the VCS, if applicable

vcsbuildnotes any notes recorded when the library was built from the VCS, if
applicable

Library Properties and Preferences 81

To view the preferences for a library

• Open your library in the Browser

• Right-click on the library icon or name in the Browser

• Select the Properties option from the library context menu

• Select the Prefs tab in the Property Manager

or

• Select your library in the Browser and Press F6/Cmnd-6

• Click on the Prefs tab in the Property Manager

82 Chapter 3—Libraries and Classes

The library preferences are stored in the library file and control the behavior of that
particular library and its contents. The preferences are summarized here.

defaultname the default name of the library; you can reference classes outside
the current library using defaultname.classname

exportedquotes if true text is exported in quotes

sharedpictures if true pictures are converted to OMNIS shared format; they are
then visible under all platforms

uniquefieldnames if true file class field names must be unique, that is, fields in
different file classes are not allowed the same name

sensitivefieldnames if false the case of file class field names is ignored; otherwise
they are case sensitive

sensitivefilenames if false the case of file class names is ignored; otherwise they are
case sensitive

v3events true if v3 events are enabled, true for converted v3 libraries,
false for new libraries; unless you are running a converted
library you should leave this set to false

keyevents activates events for key presses

mouseevents activates events for mouse clicks

rmouseevents activates events for right-button mouse clicks

statusevents activates events for field status, that is, events when the field is
enabled, disabled, shown, or hidden

canfocusbuttons if true buttons, check boxes, radio buttons get the focus on open
windows

sqlstripspaces if true trailing spaces are stripped from retrieved character
columns when data is fetched from SQL

screencoordinates if true hscale and vscale properties scale open windows; this
also enables fontscale

fiscalyearend the date of the fiscal year end; used in financial date calculations

weekstart the starting day of the week for date calculations

centuryrange the starting year of the century range you are using; defaults to
1980

hscale horizontal scale factor of the main OMNIS window when
screencoordinates property is set

vscale vertical scale factor of the main OMNIS window when
screencoordinates property is set

fontscale if true font scaling occurs when screencoordinates is set

startuptaskname name of the task class that opens when the library opens;
defaults to “Startup_Task” for new libraries

Library Properties and Preferences 83

styleplatform specifies the current platform for window field styles

helpfoldername the name of the help folder for your library, located in the HELP
folder under the main OMNIS folder

userexportdelimiter the field delimiter to be used on export, default is ;

Initially you won’t need to change any of these library preferences. However, if you are
developing a client/server application you may need to change the uniquefieldnames
property. For further details see the OMNIS Programming manual.

Default Library Name
The defaultname property stores the internal name for a library used throughout your
application to reference classes. The defaultname property defaults to the disk file name of
your library, but you can assign any name you want to the property. If you rename the
library file on disk the defaultname remains the same retaining all class references. If you
are using multiple libraries you should set defaultname for all your open libraries and use it
to refer to classes outside the current library. If you change the defaultname property after
you start developing your library, all class references that use it will fail; therefore in a
multi-library system you should set it once before you start adding classes to your library.

84 Chapter 3—Libraries and Classes

Classes
Classes are predefined structures that control the appearance and behavior of the objects in
your application. Classes are the main components in your library file. You can create
classes from the templates provided in the Component Store, or you can create them from
the Browser. You can create any number of classes in each library file and modify them at
any time while you develop your application.

There are several different types of class in OMNIS, each one performing a particular
function in your library, or in your application as a whole. In general, classes are either
Data classes, GUI classes, or Container classes depending on the type of object they define
and what other objects they contain. The types of class are

Schema
data class that defines a server table and its columns
on your server database

Query
data class that defines one or more server tables and
their columns on your server database

Table
data class that maps to a schema class and contains
methods for processing your server data

File
data class that defines the structure in an OMNIS
data file

Search
class that filters data stored in an OMNIS data file

Window
gui class that defines the data entry windows and
dialogs in your application

Menu
gui class that defines standard pulldown, popup, and
hierarchical menus in your application

Classes 85

Toolbar
gui class that defines the toolbars in your
application

Report
gui class that defines the reports you can print in
your application

Task
class that contains or controls other instances, and
handles events in your application

Object
class that contains methods and variables defining
your own structured data objects

Code
class that contains global methods you can use
throughout your application

This chapter describes the general characteristics of classes and how you create them from
the Component Store. Individual classes are discussed in separate chapters in this manual.

To create a new class from the Component Store

You can create a new class using drag and drop when the Browser is showing the classes in
your library. In this case you can drop the new class anywhere on the Browser. To do this

• Show the classes in your library in the Browser, using View>>Down One Level

• Drag the type of class you want to create from the Component Store onto the Browser

or if the Browser is displaying libraries you can

• Drag the type of class you want to create from the Component Store onto your library
icon or name in the Browser

• Release the mouse when the Browser or library highlights

86 Chapter 3—Libraries and Classes

To create a new class from the Browser

• Show the classes in your library in the Browser, using View>>Down One Level

• Select the Class>>New option in the Browser menu bar

• Select the type of class you want to create

If one of the options under Class>>New menu is grayed out, that type of class is not
currently visible in the Browser and OMNIS will not let you create that type of class from
the Component Store or the Browser. If you want to create classes of this type you need to
show them using the Browser Options available under the View menu or press F7/Cmnd-7.

When you create a new class in the Browser, OMNIS gives it a default name, normally
“New <Class>“, that is, the name of the default template for that type of class. You can
accept this name or change it to something more appropriate to your library.

To name or rename a class

Assuming you have created a class in the Browser

• Click on the class to highlight its name

• You may need to click on the name again to make the name enterable

• Type the new name of the class

• If you delete the name altogether, you can press Esc to get back to the original name

If you rename a class, OMNIS will ask you if you want to find references to the old name
and replace them with the new class name. If you answer Yes, the Find and Replace dialog
is opened which lets you change all references to the class throughout your library.

OMNIS does not impose any restriction on the characters you use to name a class.
However, you should avoid using all non-alphanumeric characters including all punctuation
marks such as commas, colons, periods, forward and backslashes, and all types of brackets.
Furthermore, you should avoid adding leading or trailing spaces to class names.

To copy a class from one library to another

• Open each library in a separate Browser window

• View the classes in the library containing the class you want to copy, using the
View>>Down One Level option in the Browser menu bar

• Select the class or any number of classes and drag your selection onto the destination
library

Classes 87

or

• Select the class or classes and use Edit>>Copy to copy your selection to the clipboard

• Select your destination library and use Edit>>Paste to paste the class or classes

Note that using the clipboard lets you copy classes between libraries when the Browser is in
single window mode. When you copy classes from one library to another you may need to
copy other associated files. For example, if the window classes in your library use field
styles you must copy the #STYLES system table containing the field styles into your
destination library, and you should copy across the system table first before any window
classes. For complete library and component management you should use the OMNIS
Version Control system.

Printing Classes
When you print a window or report class from the Browser, you get a summary of the
objects on the window or report. If you want to print detailed information about one or more
objects on a report or window class, you need to open the window or report class editor,
select the object or objects you want to print, and use the print button on the standard IDE
toolbar or the print item on the File menu.

You can print a summary list of the classes currently displayed.

To print the summary list to the current print destination

• Deselect all classes

Then

• Press the print button on the standard IDE toolbar

or

• Select the Print Class Details item on the standard File menu

or

• Press Ctrl-Cmnd-P

Locked classes and system table classes cannot be printed.

88 Chapter 3—Libraries and Classes

Class Properties
All classes have certain general properties, as well as their own special properties. For
example, they all have a name, a type, creation date, and so on. This section describes the
common class properties, whereas subsequent chapters describe class-specific properties,
including those to do with inheritance, when you need to know about them.

To view the properties of a class

• View the class in the Browser (any view will do, Icons or Details)

• Right-click on the class and select the Properties menu item

Class Properties 89

or

• Select the class in the Browser and select View>>Properties from the Browser
menubar, or press F6/Cmnd-6

or for some classes, such as windows and reports, you can

• Double-click on the class to open it in design mode

• Right-click on the background of the class design screen, and select the Properties
option from its context menu

The properties of a task class The properties of a window class

As shown, some types of class, such as task classes, have only a few common properties
while others, such as window classes, have many other properties that are unique to the
class. In the Property Manager you can change the properties of a class, but you can’t
change a property that is shown in red or where its value is grayed out.

Most of the common or general properties of a class are self-explanatory. The external
property means the class is visible to other libraries, normally set to false. The
designtaskname is the task in which you expect to use the class, and it enables you to use
the task variables of that task in the class. The showascheckedout property shows whether
the class has been checked out of the OMNIS Version Control System. See the Version
Control chapter for more information.

90 Chapter 3—Libraries and Classes

Note that you cannot change the classtype, moddate, createdate, or disksize properties in
the Property Manager, but you can change the class name or add a description, although a
description is not essential.

The class context menu, which you get by right-clicking on the class in the Browser or in
the class design screen itself, also lets you

– Open or Print the class
open an instance of the class, e.g. open a window, install a menu, print a report

– Modify the class
that is, open the design window for the class

– Methods
opens the method editor for the class which lets add methods and variables to the class;
this option is grayed for classes that cannot contain methods

– Interface Manager
opens the Interface Manager for the class which displays the public methods and
properties of the class

– Print
sends a report of the properties, variables and methods of the class to the currently
selected print destination

– Make Subclass
creates a subclass of the selected class

– Rename the class
when you rename a class all references to the class are changed

– Duplicate the class
creates an exact copy of the class with the name “<Class> copy”

– Delete the class
the class is permanently removed from the library file; this is irreversible

– Lock the class
when you lock a class you can no longer view or modify it; this is irreversible

– Check In
checks the class into the VCS; this is only available if you have the OMNIS VCS

– Properties
shows the properties of the class

– Inheritance Tree
opens the Inheritance Tree with the current class selected

Some of these options are duplicated in the Class menu in the Browser, and act on the
selected class or a number of selected classes.

Default Classes 91

Default Classes
When you create a new library in OMNIS, it contains certain default classes including a
task class called Startup_Task and various system tables that control the appearance of your
library. To start creating your own classes in your library you don’t need to do anything
with these default classes, but this section gives you a brief overview of how they affect
your library. For full details about using tasks, see the OMNIS Programming manual.

The Startup Task
When you create a new library it contains a task class called Startup_Task. When you open
your library the startup task is opened and the initialization code within it is run
automatically. Therefore if you want your library to do something in particular when it starts
up, you put the code to do it in the startup task. For example, you might want your library to
open an About screen or install a menu. You would put the code to do these things in your
start up task.

Each library has a preference called startuptaskname which stores the name of the startup
task, and is set to Startup_Task by default. To change the task that is run when your library
opens, you need to change this property, but in most cases you can leave it set to
Startup_Task.

The startup task has a special function when you are designing your library and adding other
classes and variables to your library. At present you don’t need to worry about the startup
task or do anything to it, you can proceed to create your data and gui classes in your library.

System Tables
Every new library contains a number of system tables. However the default options in the
Browser mean they are hidden when you create and view a library. You can show them by
changing the Browser options, or by pressing Shift-Ctrl/Cmnd-A to show all the classes in
your library. The system tables are prefixed with “#”.

System tables are special types of class that hold information about the OMNIS
environment, including field styles, fonts, input masks, and external components. You can
edit some of the system tables to change the way OMNIS behaves. The settings for these
tables are stored for each separate library. You can copy system tables from one library to
another and you can edit them, but some options available for normal classes are not
available for these tables.

92 Chapter 3—Libraries and Classes

To view the system tables for a library

• Open your library in the Browser and display its classes

• Select View>>Browser Options on the Browser menu bar, or press F7/Cmnd-7

• Check the System Tables option and click OK

or when the Browser is the top window

• Press Shift-Ctrl/Cmnd-A to show all classes, including the system tables

Default Classes 93

Most of the system tables are described in details in the OMNIS Programming manual; they
are summarized here.

Name Description

#BFORMS boolean formats; these specify the format of Boolean fields
allowed in your library

#DFORMS date formats; these specify the format of short date, and date and
time values

#EXTCOMPLIBS the external components available in the current library: described
in the External Components chapter

#ICONS the icon file for the current library; described in the Library Tools
chapter

#MASKS input masks for data entry fields

#NFORMS number formats for numeric data entry fields

#PASSWORDS the master and user passwords for your library; described in the
Library Tools chapter

#STYLES character styles for window and report fields, and text objects

#TFORMS text formats; these specify the format of character fields

#WIRFONTS
#MARFONTS

font table for report classes under Windows or MacOS; in this
system table you can map fonts used on report classes under one
operating system to fonts appropriate for the other OS

#WIWFONTS
#MAWFONTS

font table for window classes under Windows or MacOS; in this
system table you can map fonts used on window classes under one
operating system to fonts appropriate for the other OS

You can edit a system table by double-clicking on it in the Browser. For example, you can
double-click on #DFORMS which opens the Date formats dialog showing all the date
formats for the current library.

94 Chapter 3—Libraries and Classes

OMNIS Preferences
This section describes the global preferences or options in OMNIS, which are the properties
of OMNIS itself. You use the Property Manager to display or change them. Most of these
preferences affect how your libraries behave.

To view the OMNIS preferences

• Select the Tools>>Options menu item from the main menu bar; this option is called
Preferences under MacOS

The Property Manager opens showing the OMNIS preferences, organized on several panes.
These options control the overall behavior of OMNIS. You can change any of the
preferences shown in blue, but not those shown in red; note that you can change the default
color of properties you can and can’t set in these preferences. The preferences are as
follows.

OMNIS Preferences 95

General Preferences
promptforreorg if true OMNIS prompts you when a data file needs reorganizing

usecms if true centimeters are used for report measurements: when false
inches are used as the default units

translateoutput when true OMNIS converts the OEM character set to ANSI
when importing or exporting data to a file, port, or the
clipboard: only has affect for character values greater than 127

loadadhocs true if your serial number allows access to ad hocs

noomnisdata true if your serial number does not allow access to data files

cdrom true if your serial number does not allow write-access to data
files and libraries, that is, they are accessed from a CD-ROM

exportnullsasempty when true NULL values are exported as empty values

language the current language as defined in OMNISLOC.df1

newlanguage the language used when you restart as defined in
OMNISLOC.df1

recentfiles if true recent open libraries are added to the Browser Library
menu, recent open data files to the Datafile menu in the Data
File Browser, and recent icon datafiles to the icon editor menu

designscreenaid dotted area on the OMNIS development screen to help you
design for smaller screen sizes (MacOS only)

stickywindowmenubar (MacOS only) If true, menus in OMNIS windows behave in the
MacOS 8 style; otherwise behavior reverts to pre-OS 8 style

showtoolbartips if true toolbar tooltips are shown in OMNIS and your libraries

showwindowtips if true window object tooltips are shown in OMNIS and your
libraries

Appearance Preferences
helpbaron if true shows the help status bar at the foot of the OMNIS window

on the PC, or at the foot of the monitor on Mac.

balloonson if true help balloons are turned on (MacOS only)

helpfont sets the font type and size of the help status bar and balloons

inheritedcolor color of inherited objects and properties

setpropertycolor color for properties that you can set in the Property Manager

nosetpropertycolor color for properties that you cannot set in the Property Manager

toolobjselectcolor color for the currently selected control in toolbar design mode

runtimepropertycolor color for runtime properties shown in the Property Manager

96 Chapter 3—Libraries and Classes

style97 if true toolbar and icon array buttons are flat; you must restart
OMNIS for this option to take effect

taskbar displays a taskbar at the top or bottom of the OMNIS application
window, default is none (Win 95 & NT only)

minimizeiconid the iconid for the OMNIS windows when it is minimized

fullscreen if true OMNIS is running in fullscreen view; the OMNIS window
is maximized, and the main menu bar is removed

Devices Preferences
See the Report Classes chapter for more information.

reportfile the full path and file name for the Disk device

printfile the full path and file name for the File device

editionfile the full path and file name for the DDE/Publisher device

pages the page or page numbers to be sent to the device

reportdataname the name of the binary field for the Memory device

reportfield the name of the window field for a Preview or Screen report

windowprefs the optional title and screen co-ordinates for a Screen or Preview
window

waitforuser if true, method execution is halted until the user closes the Screen
or Preview window

hideuntilcomplete if true, a Screen or Preview window remains hidden until the
report is finished

charsperinch the number of characters per inch when printing to a text-based
device

linesperinch the number of lines per inch when printing to a text-based device

generatepages if true, reports generate paged output when printing to text-based
devices, that is, page headers and footers are generated as normal;
if false, only one report header and page header is printed at the
beginning of the report

linesperpage the number of lines per page when $generatepages is true

restrictpagewidth if true, the width of a page is restricted when printing to text-
based devices

charsperline the number of characters per line when $restrictpagewidth is true

sendformfeed if true, form feeds are sent to text-based devices after each page

appendfile if true, data is appended to the current print file specified in
$printfile, if false, the file is overwritten when printing to the File
device

OMNIS Preferences 97

istext if true, forces a non-text device to behave like a text-based device
using the same preferences as text-based devices

portname the name of the port when printing to the Port device

portspeed the port speed setting when printing to the Port device

porthandshake the handshake when printing to the Port device

portparity the parity checking when printing to the Port device

portdatabits the number of databits when printing to the Port device

portstopbits the number of stop bits to be used when printing to the Port
device

Page Setup Preferences
See the Report Classes chapter for more information.

pagesetupdata stores the page setup data for the class. You can click on the
down arrow to open the page setup dialog. When the page setup
is specified the property displays (Not empty); you can delete this
text to clear the current page setup

orientation the page orientation;

paper the paper type constant

paperlength the length of the paper in cms or inches depending on the usecms
preference

paperwidth the width of the paper in cms or inches depending on the usecms
preference

scale the scaling factor in percent

copies the number of copies

Methods
serialize when executed, this method opens the OMNIS serialization

dialog; see the Serialization and Installation chapter

98 Chapter 4—Variables and Methods

Chapter 4—Variables and
Methods

This chapter describes how you add variables and methods to the objects in your library
using the method editor.

In OMNIS the principal data container is the variable. Most objects can contain variables,
but their scope and the kind of data they can contain depends on the type of variable. You
can add variables to any class that can be opened or instantiated, or any class that can
contain methods, namely window, menu, toolbar, report, task, table, code, and object
classes. You use the method editor to add variables to the objects in your library.

M E N U
CLASS

var iables
methods

report
instance

var iables
methods

window
instance

var iables
methods

T O O L B A R
CLASS

var iables
methods

Methods are pieces of code contained in a class or object that perform some action when the
object receives the appropriate message. In OMNIS every object has certain default or
standard methods, but you can add your own methods to either override the standard
behavior or add functionality to the object. You can add methods to do everything from
handling events and controlling program flow, to sending SQL statements to a server, to
printing statements from an invoices application. Like variables, you can add methods to
any class that can be opened or instantiated, and you use the method editor to do this.

Furthermore, you can add methods behind window and report fields, menu lines, and
toolbar controls. You use the method editor to add and debug methods for these objects too.

Data Types 99

Data Types
Before you can add variables to the objects in your library you need to understand the
different data types available in OMNIS. Choosing the right type for your data ensures that
OMNIS will do the right thing in computations requiring conversion. It also lets OMNIS
validate the data as you enter or retrieve it.

This section describes in detail the standard data types you can use to represent data in
OMNIS. Some of the basic data types have subtypes, or restrictions of size or other
characteristics of the data that give you finer control over the kind of data you can handle.
The following data types are available.

Character standard character set sorted by ASCII value

National standard character set sorted by national sort order

Number multiple types for representing integers, fixed point and
floating point numbers

Boolean single-byte values representing true or false values, or
their equivalents

Date Time multiple types for representing simple dates and times, or
composite date and times, between 1900 and 2099 to the
nearest hundredth of a second

Sequence proprietary data type for numbering OMNIS data file
records

Picture stores color graphics of unlimited size and bit-depth in
platform-specific format or in a proprietary shared
picture format

List structured data type that holds multiple columns and
rows of data of any type

Row structured data type that holds multiple columns of data
in a single row

Object your own structured data type based on an object class

Binary stores any type of data in binary form, including BLOBs

Item Reference stores the full notation of an object in your library or
OMNIS itself

Field Reference passes a reference to a field (parameter variables only)

100 Chapter 4—Variables and Methods

Character
Character data can contain characters from any of the various single-byte standard character
sets. You can define a Character column of up to 10 million (10,000,000) bytes in length.
Character columns or fields generally correspond to SQL VARCHAR data and have a
varying length format.

In OMNIS character data is sorted according to its ASCII character set representation, not
the server representation. The ASCII character set sorts any upper case letter in front of any
lower case letter. For example, these character values

adder, BABOON, aSP, AARDVARK, Antelope, ANT

are sorted as

AARDVARK, ANT, Antelope, BABOON, aSP, adder

National
Like Character data, National data can contain characters from any of the various single-
byte standard character sets. You can define a National column of up to 10 million
(10,000,000) bytes in length. However, when you sort National data, OMNIS sorts the
values according to the ordering used by a particular national character set.

The ordering for the English language follows: A, a, B, b, C, c, D, and so on. For example,
if the previous values were values of a national column or field, OMNIS would sort them as
follows:

AARDVARK, ANT, Antelope, adder, aSP, BABOON.

If you store data in an OMNIS data file, OMNIS stores a copy of the ordering in the file
along with the data. If you use the data file on another machine, OMNIS preserves the
original ordering.

Data Types 101

Number
A number is an integral or floating point number having various storage and value
characteristics, depending on its subtype. The following table summarizes the different
subtypes for numbers.

Number type
(dp = "decimal
places")

Storage
(bytes)

Range

Short integer 1 0 to 255

Long integer 4 -2,000,000,000 to +2,000,000,000

Short 0 dp 4 -999,999,999 to +999,999,999

Short 2 dp 4 -9,999,999.99 to +9,999,999.99

Floating dp 8 approx -1E100 to +1E100 (16 significant digits)

Number 0 dp 8 -999,999,999,999,999 to +999,999,999,999,999

Number 1 dp 8 -99,999,999,999,999.9 to +99,999,999,999,999.9

Number 2 dp 8 -9,999,999,999,999.99 to +9,999,999,999,999.99

Number 3 dp 8 -999,999,999,999.999 to +999,999,999,999.999

Number 4 dp 8 -99,999,999,999.9999 to +99,999,999,999.9999

Number 5 dp 8 -9,999,999,999.99999 to +9,999,999,999.99999

Number 6 dp 8 -999,999,999.999,999 to +999,999,999.999,999

Number 8 dp 8 -9,999,999.999,999,99 to +9,999,999.999,999,99

Number 10 dp 8 -99,999.999,999,999,9 to +99,999.999,999,999,9

Number 12 dp 8 -999.999,999,999,999 to +999.999,999,999,999

Number 14 dp 8 -9.999,999,999,999,99 to +9.999,999,999,999,99

Floating Point Numbers
There are many pitfalls in using floating point numbers in programming. Computers do not
represent these numbers exactly, only approximately within the precision of the machine.
This can lead to all kinds of anomalous problems with comparison of values, particularly
with equality comparisons. Two floating point numbers may differ by an infinitesimal
amount depending on the technique used to generate the values, even though logically they
should be the same.

In general, you should not use equality comparisons with floating point numbers. If you are
working with “fixed-point” data such as money values, use scaled integers for comparison
and arithmetic.

For example, instead of comparing two floating point variables F1 and F2 containing the
amounts $5.00 and $10.00, compare two integer variables I1 and I2 containing 500 and

102 Chapter 4—Variables and Methods

1000. Display I1 * .01 when you need a decimal value. You can also use the rnd() function
to round the numbers to a certain number of decimal places before comparing them.

Boolean
The boolean data type represents single-byte values of true (yes), false (no), empty, or null.
You should take care to give each Boolean column or field an initial value, because OMNIS
initializes boolean data to “empty”, not NO or null.

When used in a data entry field in a window, boolean data is treated as three characters in
which any data entry is interpreted as a YES or NO. A `Y', 'YE' or 1 is seen as YES while
an 'N' or 0 will suffice for No. If the field is a check box, you enter the boolean value by
clicking on the box. If you don't initialize the field and the user does not click on the box,
the field has an “empty” value.

You can use boolean values in expressions. The numeric value is 1 for Yes values and 0 for
No and empty values. NULL values are treated as undefined in numeric calculations. For
example, (null+1) is null and (null>1) is null.

When converted to character strings, Boolean columns or fields can take values "YES",
"NO", "NULL", or empty, "". In some cases, for example when setting up search criteria,
you can enter values other than these for a Boolean field; in this case, OMNIS converts
them and matches them with empty. Thus, for example, the value 'FALSE' is converted to
empty, as are values like SAM, HAPPY, and so on.

Date Time
The date and time group of data types contains three basic subtypes: a four-byte Short date,
a two-byte Short time, and an eight-byte Long date and time. The following table
summarizes the date and time subtypes.

Date Time
subtypes

Storage
(bytes)

Range

Short date 4 1900..1999

Short date 4 1980..2079

Short date 4 2000..2099

Short time 2 Minute resolution

Date time(#FDT) 8 Formatted #FDT, to
centiseconds

Date time(D m Y) 8 Formatted D m Y, to
centiseconds

Data Types 103

Note that the display of dates depends on the settings in the #DFORMS system table. Also
the long date and time subtypes are identical in value, only displaying differently in window
fields.

Short Date
The short date type spans the range JAN/1/0000 to DEC/31/9999. There are three specific
built in ranges: 1900 to 1999, 1980 to 2079, and 2000 to 2099. By choosing the appropriate
range, you can enter just two digits for the year and OMNIS recognizes the century
correctly. For example, if you select the range as 2000 to 2099, a date you enter as 7,12,57
will be read as 7,12,2057 rather than 1957. To enter a date outside the three specific year
ranges, you need to set up your own date display format.

Using these date ranges you will avoid the Year 2000 problems inherent in some other
systems.

OMNIS accepts dates in different formats automatically, with the exact format depending
on whether your system is US or European. For example, you could enter the 7th of
December, 1998, as any of the following strings.

US system European system

12-7-98 07-12-98

12/7/98 7/12/98

12%7%98 7%12%98

DEC 7 98 7 DEC 98

The US and UK versions of OMNIS have different date displays because their default date
format strings are different.

You can use any character to delimit the day and month figures. If you don't specify the year
or month and year, OMNIS assumes the current year or month and year, respectively.

OMNIS supports three kinds of date arithmetic in expressions.

– Addition of days:
Date + Days = Date (forward)

– Subtraction of days:
Date - Days = Date (back)

– Subtraction of dates to yield number of days between the dates:
Date1 - Date2 = Number of Days between the dates

OMNIS uses the string variable #FD to define the display format of dates. There are also
several date functions that let you manipulate date strings.

104 Chapter 4—Variables and Methods

Short Time
Short time types have two-byte values in the form HH:NN. The range of possible time
values is from 00:00 to 23:59.

You can use time in expressions. OMNIS automatically converts the time into numeric
values using the conversion HH*60+NN, giving the total number of minutes. The #FT
string variable controls conversions between time and string types.

Long Date and Time
The combined Date Time type can hold a complete date and time to 1/100th second. It has
various subtypes depending on the display format you select (stored in #FDT) and uses 8
bytes when stored in a data file.

Date and Time Calculations
The numeric value of a date or time variable in an expression depends on the format string
for that variable. So, if DATE1 has date format string H:N and DATE2 has date format
string H:N:S, DATE1 has a numeric value equal to the number of minutes since midnight
and DATE2 has numeric value equal to the number of seconds since midnight. It follows
that DATE1+1 adds 1 minute to DATE1 and DATE2+60 adds 1 minute to DATE2.

Addition and subtraction involving two date/times cause the numeric value of each to adjust
so that they are both based on a common denominator. Thus DATE1-DATE2 returns a
numeric value equal to the correct difference between the two times in seconds. However,
DATE1*1-DATE2*1 loses the information that DATE1 and DATE2 represent date times
and returns a meaningless difference between the DATE1 value in minutes and the DATE2
value in seconds, for example, 500 minutes - 600 seconds.

Note that calculations involving combined dates and times do not work properly if the date
part is before 1900. Comparisons between two datetimes with different date format strings
work properly.

When you compare parts of dates, for example, the month part of a date, dtm('11 June 98'),
OMNIS compares the string representation of the month unless some calculation forces it to
use the number representation of the month. Thus the expression dtm('11 Dec 98') is less
than dtm('11 June 98') because 'D' is before 'J' in the alphabet. To force a correct numeric
comparison, add 0. For example

If dtm('11 June 98')<(dtm('11 Dec 98')+0)

OK message {6 is less than 12}

End If

You should try to use straight date comparisons if you are comparing full dates. Don’t try to
convert them into integers or other types of data. Let OMNIS do the work for you.

Data Types 105

Century Ranges for Dates
When entering data into a date time field or variable without specifying the century, the date
normally defaults to be within the hundred year range starting with 1st January 1980.
However, you can specify the start of the hundred year default range as a library preference
with the option of overriding it for individual date types.

You can use the $centuryrange library preference to set the default century range
($clib.$prefs.$centuryrange), a four digit year is specified which defaults to 1980. So if, for
example, $centuryrange is set to 1998, dates for which no century is entered default to
between 1st January 1998 and 31st December 2097.

In addition, the 30 date formats which are stored in the #DFORMS system table can include
the century range by including a four digit year at the end of the date format. For example,
date formats starting at 1st January 1998 include ‘D m Y H:N:S 1998’ and ‘YMD 1998’.
This can be used to override $centuryrange for particular date types. The same mechanism
can be used to control the conversion of character values to dates using the dat() function,
for example:

Do dat(charvar,’D m Y 1998’) Returns datavar

Century ranges are used when dates are entered from the keyboard or when a character
string is converted to a date. If you enter a date that includes the century, the century range
is ignored. Century ranges do not affect how a date value is stored or displayed, OMNIS
always stores the full date including the century.

Sequence
Every time OMNIS inserts a new record into an OMNIS data file, it assigns a unique
number, a record sequencing number or RSN to that record. There is a special data type,
the sequence, for this type of data. Each RSN references a location in the data file. If you
delete a record, OMNIS does not reuse the RSN. The RSN is stored as a 32-bit integer so its
maximum value is 2^32-1, which is approximately 4,295 million! The sequence type is not
applicable to client/server data.

OMNIS assigns record sequencing numbers (RSNs) according to the following rules:

– The first record in a file has RSN 1, the second record RSN 2, and so on

– An RSN is never used again, even though the record may no longer exist

A window field with sequence type provides a way for the user to see the RSN for any
record in an OMNIS data file, even though they cannot change it.

OMNIS assigns the RSN just before saving the record in the data file, so it is not available
for any calculations prior to the Update files command.

106 Chapter 4—Variables and Methods

Picture
The picture data type holds color graphics with a size limited only by memory. The space
each picture consumes depends on the size and resolution of the image. The internal storage
of a picture is either in native format (Windows bitmap or DIB or metafile or Macintosh
PICT) or in OMNIS shared color format. Server databases store picture data as binary
objects (BLOBs).

List
The list is a structured data type that can hold multiple columns and rows of data. A list can
hold an unlimited number of lines and can have up to 400 columns. When you create a list
variable you set the type of each column. The data type of each column in your list can be
any one of the other data types including Character, Number, Date, Picture, and List: Yes,
you can even have lists within lists!

OMNIS makes use of the list data type in many different kinds of programming tasks.
Normally you would create a variable with list data type and build your list in memory from
your server data or OMNIS data file. Then you could use your list data as the basis for a
grid or list field on a window, or you could use it to generate a report.

You can store lists in OMNIS data files directly. To store a list in a SQL table on a server,
you can map it to a binary field of some kind.

Row
The row is a structured data type, like a list, that can hold multiple columns and types of
data, but has one row only: it is essentially a list type with a single row. A row can have up
to 400 columns. When you create and define a row variable, you set the type of each
column. As with lists, the data type of each column in your row can be any one of the other
data types including Character, Number, Date, Picture, List, and Row.

Object
Object classes let you define your own structured data objects. Their structure, behavior,
and the type of data they can hold is defined in the variables and methods that you add to
the object class. A variable with object type is a variable based on an object class: the
subtype of the variable is the name of an object class. For example, you can create an
instance variable of Object type that contains the class and instance variables defined in an
object class.

When you reference a variable based on an object class you create an instance of that object
class. You can call its methods with the notation VarName.$MethodName(). For an object
variable the initial value contains the parameters which are passed to $construct() for the
class when the instance is constructed. The instance lasts for as long as the variable exists.

Data Types 107

You can store object instances in a list. Each line of the list will have its own instance of the
object class. You can store object variables, and hence their values, in an OMNIS data file
or server database which can store binary values. If an object variable is stored in a data file
the value of all its instance variables are stored in binary form. When the data is read back
into OMNIS the instance is rebuilt with the same instance variable values.

Binary
The binary type can store structured data of unlimited length up to your maximum available
memory. OMNIS does not know anything about the format and structure of the data in a
binary column or field. In this type of column or field you could place, for example, desktop
publishing files, MIDI system exclusive files, CAD files, and so on. You could store the
definition of an OMNIS class in a binary field.

Binary data corresponds to binary large objects (BLOBs) on most database servers.

Item Reference
You can use a variable of type Item reference to store an alias or reference to an object in
OMNIS or in your library. You assign the notation for the object to the item reference
variable using the Set reference command. You can use an item reference variable in
calculations or expressions which saves you having to quote the full path to the object. You
can also use an item reference variable with the Do command to return a reference to the
object or instance created by the command.

Field Reference
You can pass a reference to a field using the field reference data type, available for
parameter variables only. A parameter variable with the field reference type must have a
valid field in the calling method. Once the field reference parameter variable is set up, a
reference to the parameter is the same as using the field whose name is passed.

Nulls and Empty Values
A variable or column of any data type can be NULL. This means the value is unknown or
irrelevant, and that there is therefore no way to operate on the column value. A null value is
distinguishable from an empty value, which represents empty or uninitialized data.

When defining a file class, you can specify that a field Can Be Null or Cannot Be Null.
This controls the handling of rows written to OMNIS data files only and is irrelevant for
client/server data, since it doesn’t prevent fields from getting null values in OMNIS
calculations. Null data from a SQL database corresponds to null values in OMNIS fields
and variables, and null values are sent to a server database as SQL nulls.

You can use the hash variable #NULL to represent null values in calculations. For example,
to set a variable to null

108 Chapter 4—Variables and Methods

Calculate LV_Variable as #NULL

The result of arithmetic, comparison, and logical operators on null data is always null. With
string functions such as con() and jst(), however, OMNIS translates null to empty. The
isnull() function returns kTrue if the value is null and kFalse if not.

When you use an OMNIS sort on columns or variables with nulls, OMNIS sorts the nulls
first and separately from the empty values (or, for a descending sort, last). In a sorted report
the nulls come first and do generate a break.

When exporting records in a text format, null values export as an unquoted string NULL,
unless a particular format doesn’t support nulls. In this case, OMNIS translates the null to
empty. Occurrences of this unquoted string in an import file import as nulls.

Formatting Strings and Input Masks
You can further structure Character, National, Date, and Boolean data for display in
window fields using formatting strings and input masks: see the Window Programming
chapter in the Omnis Programming manual for details.

Variables
Variables can hold different types of data and are visible in different parts of your
application depending on their data type and scope. For example, if you create a variable of
list data type in a window class, the list variable and hence its data is visible within the
window class and all its instances, but is not accessible elsewhere in your library.

Declaration and Scope
A variable may be global, accessible from all parts of your application, or it may have its
scope restricted to certain areas so that it cannot be referred to from elsewhere. By declaring
variables in the proper scopes, you limit the potential for arbitrary connections across your
application and thus reduce the potential for error and the complexity of your application.

When two or more types of variable use the same variable name, a reference to that variable
could be ambiguous. In a situation where more than one variable of the same name exists,
OMNIS automatically uses the variable with the smallest scope. Therefore, it is possible,
though not good practice, to have local, class, and task variables called "MYNAME". As
OMNIS resolves ambiguity, a reference to MYNAME will refer to the local variable if it
exists for the current method.

Variables 109

The following table lists the different kinds of variables and their scope. It also shows when
they are initialized and destroyed.

Variable When Initialized When Destroyed Scope

Parameter on calling the
method

returning to the calling
method

the recipient method

Local on running the
method

on terminating a
method

the method

Instance on opening an
instance

on closing the instance a single instance of a
class

Class on opening a
library

on clearing class
variables or closing a
library

the class, and all
instances of the class

Task on opening an
instance of the task

on closing the task
instance

the task, and all its
classes and instances

Hash on starting OMNIS on quitting OMNIS global

Apart from hash variables which are permanently built into OMNIS, you must create all
variables with the appropriate type and scope in the objects in your library using the method
editor. After you have declared them, variables that are in scope are listed in the Catalog.
You can remove a variable using the Delete Variable option in the variable pane context
menu. Declared variables are removed from memory when they are destroyed.

Parameter Variables
You can use a parameter variable to receive a value in a method, for example, a value that
has been passed to the method using the Do method or Do code method command. You
would normally do something with the value in the method and possibly return a new value.
Parameter variables are visible within the called or recipient method only. They are
initialized when the method is called, and cleared when the method returns to its caller.

Local Variables
Local variables are local to the method. You can refer to the variable within that method
only. Local variables are initialized when the method begins execution, and are cleared
automatically when the method terminates.

Instance Variables
Instance variables are visible to the instance only, that is, all methods and objects in the
instance. You can define an instance variable only for classes that can be opened or
instantiated: tasks, tables, windows, reports, menus, toolbars and objects. Note that you
cannot declare instance variables in code classes. There is a set of the declared instance

110 Chapter 4—Variables and Methods

variables for each instance of a class: these are initialized when the instance is constructed
and cleared when the instance is destructed.

Class Variables
Class variables are visible within the class and all its instances. You can declare class
variables for tasks, tables, windows, reports, menus, toolbars, and code classes. Any object
or method in the class can refer to a class variable, and all instances of the class also have
access to the class variable.

Class variables are not automatically cleared from memory. You can remove them from
memory by closing the library containing the class, or using the Clear class variables
command.

Task Variables
Task variables are visible within the task, all its design classes and instances. In practice,
you can refer to a task variable from any method within any class or instance that belongs to
the task. OMNIS initializes task variables when you open the task: for the startup task this is
when the library opens. Note that you cannot declare a task variable for a class until you
have set the designtaskname property for the class.

Hash Variables
OMNIS has a built-in set of global variables, called hash variables since they start with the
symbol "#". You can view them in the Catalog.

– #1-#60, which are numeric variables

– #L1-#L8, which are list variables

– #S1-#S5, which are string or character variables (up to 10,000,000 characters)

– System, which are miscellaneous values that OMNIS uses

Hash variables are global, unlike any other variables, so all libraries have access to them.
The advantage of having global variables is that you can use these variables to pass data
between libraries in an application. The disadvantage is that any data you place in hash
variables remains there when you switch between libraries or combine libraries, with
potentially unpredictable results.

Variables 111

Adding a Variable
You add variables to a class or object in the variable pane of the method editor. If the
variable pane is not visible you can show it using the View>>Show Variable Panes menu
option on the method editor menu bar. By default when you open a method editor for a class
or object the Class tab in the variable pane is selected.

The tabs in the variable pane let you define task, class, instance, local and parameter
variables; note that the local and parameter tabs only appear after you have added or
selected a method in the method editor. You can add up to 400 variables of each type to the
current object, including 400 local and parameter variables for each method in the current
object. The name, type, subtype, and initial value of each variable is listed in the variable
pane. You can size the columns in the variable pane by sizing the column headers.

You cannot declare a task variable within a class until you have set the designtaskname
property for the class: see the section below on Adding Task Variables.

To add a new variable

• Open the class in which you want to add the variable

• Right-click on the background of the class to open the class context menu

• Select the Methods option to open the method editor

• Choose the tab for the type of variable you require

• Click in the blank field under the Variable column header

• Enter the name of the variable

or

112 Chapter 4—Variables and Methods

• Right-click in the variable pane to open the variable context menu

• Choose Insert New Variable and click in the variable name to edit it, or type over the
new variable name if it is selected

Variable names can be up to 255 characters long, although you should keep them as short
but descriptive as possible. When you name a variable you can prefix its name with one or
more letters to indicate its scope. For example, parameters variables can begin with “p”,
local variables “lv”, instance variable “iv”, and so on. This convention is not obligatory, but
it may make your code more readable and help you identify variables throughout your
library.

• Tab to the Type box and choose the type from the droplist using the mouse or arrow
keys

or when the focus is in the Type box

• Type the first letter(s) of a data type to select it, for example, you can type “nu” to
select the Number data type, or “b” for Boolean and “bi” for Binary type

For Number and Date Time variables

• Tab to the Subtype box and choose a subtype; again, you can type the first letter(s) of a
subtype, for example, for Numbers you can type “L” to select the Long Integer subtype

Variables 113

You can enter an initial value or calculation for all types of variable. The initial value
allowed for a variable depends on its type. See Variable Values below.

Adding Local and Parameter Variables
Local and parameter variables are inserted into the currently selected method. Therefore to
insert these variables for a particular method, you need to select the method before inserting
local and parameter variables.

Parameter variables receive values
from a calling method in the order
that they appear in the variable
pane. You can reorder parameter
variables by dragging them into
position in the variable pane. Click
and drag the fixed-left column or
row number for a parameter
variable in the list.

Normally you must declare all types of variable, including local variables, in the variable
pane before you can use them in your code. However you can declare a special type of local
variable in your code without first declaring it in the method editor. To declare such a
variable, prefix the variable name with %% to create a string variable, or prefix the variable
name with % for a numeric variable of Floating point type. You can type such variable
names directly into your code in the method editor, at which time their names are added to
the Local variables pane.

Adding Task Variables
To add a task variable for a class you have to set its designtaskname property. In most
cases, the design task for a class is specified as the Startup_Task by default. You can change
it using the Property Manager or the notation. The design task for a class is ignored at
runtime.

To set up the design task for a class

• Click on the class in the Browser

• Display the Property Manager or bring it to the top, either from the Browser View
menu or from the class context menu

• Click on the droplist in the designtaskname property to view the current tasks

The list of tasks will contain a Startup_Task, and any tasks you may have created.

• Select the design task by clicking on it

You will now be able to define task variables for this class.

114 Chapter 4—Variables and Methods

Changing the Scope of Variables
You can change the scope of a variable at any time by dragging the variable from one
variable pane to another. For example, you can change a class variable into an instance
variable by dragging and dropping it onto the instance variable tab. Note you cannot change
the scope of task variables.

To change the scope a variable

• Drag the variable from its current pane by clicking and dragging in the fixed-left
column or row number for the variable

• Drop the variable on the appropriate tab in the variable pane

Variable Values
When you declare a variable in the variable pane of the method editor you can assign it an
initial value. The first time a variable is referenced in a method, OMNIS assigns the
specified initial value to the variable. You can set the initial value to be a number, string,
calculation, some notation, or another variable name. In the latter case, when you first use
the variable it gets the value in the other variable, regardless of the order of declaration.

For class variables only, the Clear class variables command clears the current values in all
class variables and resets them to their initial values.

You can set the initial value of parameter variables, which in effect gives them a default
value, but when and if a value is received in the method the initial value is overridden. For
example, you may want to assign an initial value of zero to a parameter value to avoid it
being null if a value is not received.

Variable Context Menu
You can lookup and edit the value of any variable or
constant in OMNIS at any time using its context menu.
You can Right-click on a variable wherever it appears in
OMNIS to open its context menu and view its current
value. The Variable context menu displays the variable
name, its current value, which group of variables or class
it belongs to, and its type and length. You can also
perform various debugging functions from this menu as
well.

If you select the first option in the Variable context
menu, OMNIS opens a variable window containing the
current contents of the variable which you can edit. Note
that you cannot edit binary variables.

Variables 115

Variable Tips
You can pass the mouse over a variable or constant and a variable tip will pop up
displaying the variable’s current value. Variable tips are available wherever variable names
appear in OMNIS including the method editor and Catalog. However, they are not available
if Help tips are enabled for the tool containing the variable. For some variable types, such as
binary variables, the tip may say “not empty” which tells you the variable has a value, but it
is too long to display.

Viewing Variables in the Catalog
You can view the variables in your library and the current class using the Catalog.

To view the variables in your library

• Open the Catalog (press F9/Cmnd-9) and click on the Variables pane

116 Chapter 4—Variables and Methods

The Variables pane shows all the Task, Class, and Instance variables for the current class,
plus all Local and Parameter variables for the currently selected method. Following the
Event Parameters group, the Catalog also lists any file classes in your library. You can enter
the name of any variable that appears in the Catalog into your code either by double-
clicking on the name in the Catalog, or by dragging the variable name out of the Catalog
into the method editor.

To select a variable from the Catalog

• Open a method editor for the class and click the cursor where you want to enter the
variable name, in the Do command Returns field for example

• Open the Catalog and click on the Variables tab

• Click on the group in the left column according to the scope of variable you want

• Double-click on the name of the variable in the right column to enter it into the method
editor

or

• Drag the variable from the Catalog and drop it onto the method editor

When you drag a variable from the Catalog, OMNIS shows you what type of variable it is
and its name. Note that you can also drag variables from the Catalog and drop them onto
window and report classes to create a data field for the variable.

Variables 117

You can also drag a variable
from the variable pane in
the method editor to any
calculation or entry field in
the command palette. To
drag a variable name you
need to click and drag the
fixed-left column or row
number in the variable list.

Auto Fill Variable
Option
When you want to enter a variable in the method editor command palette and you can’t
remember its full name, you can type the first few characters of the variable, press tab, and
choose the variable from the list that pops up. The list contains all the variables beginning
with the characters you typed.

118 Chapter 4—Variables and Methods

Methods
Most classes have their own default methods that you can execute using the Do command
and the notation, but you can add your own methods to an object using the method editor.
All types of class except schema, query, file, and search classes can contain methods.
Methods you add to a class are called Class Methods. They control the behavior and
functionality of the class, or the instance when the class is instantiated.

In addition to class methods, you can add methods to fields or objects in window, report,
menu, and toolbar classes. These are called Field Methods, or in the case of menus they are
called Line Methods, and for toolbars Tool Methods. Field methods are largely used for
handling events generated by the objects in your application.

You can add up to 501 methods to each class, and to each field or object in a class. You can
access the method editor in several different ways, including Right-clicking on the
background of a class or field and selecting the Methods option from the context menu.

Viewing Class Methods
For window, menu, toolbar, or report classes

• Open the class in which you want to add a method

• Right-click on the background of the class to open the class context menu

• Select the Class Methods option to open the method editor

or you can

• Double-click on the background of the window, menu, toolbar, or report class

or for code, task, table, or object classes

• Double-click on the class in the Browser

Methods 119

Viewing Field Methods
For window and report fields, menu lines, and toolbar controls

• Open the class in which you want to add a method

• Right-click on the field, menu line, or toolbar control to open a context menu

• Select the Field, Line, or Tool Methods option to open the method editor

or you can

• Double-click on the field, menu line, or toolbar control

There is a droplist on the method editor toolbar that lists all the field methods in the current
class. You can select a field name in this list to display the methods for that field: you can
also get back to the class methods from this droplist too.

For menu classes the droplist lists the menu line methods, and for toolbars it lists the
methods for each toolbar control, as well as the methods for the class.

Adding a Method
• Open the method editor for the class, field, menu line, or toolbar control, as above

• Click on the Insert new method button on the method editor toolbar; if the
toolbar is not visible select View>>Toolbar>>Top from the method editor
menubar

or you can

• Right-click on the left-hand side of the method editor, in the method list

120 Chapter 4—Variables and Methods

• Select Insert New Method from the context menu

A new method appears with the default name selected.

• Edit the name of the method

Your own methods can have any name you choose. For example, you can call a method
OpenCustomerWindow, PrintInvoice, DoInsert, and so on. The method name is the name
you use to call the method from elsewhere in your library, so the name should describe what
the method does. Method names should not include non-alphanumeric characters such as
slashes, commas, and periods: this avoids possible confusion or errors when you call
methods from outside the current library or when using the notation. Method names can
begin with a “$” in which case they can be used in the notation: such methods are called
custom methods. See the Object Oriented Programming in the OMNIS Programming
manual for further details about custom methods.

Adding Code to a Method
Methods can contain one or more lines of code. You add the code for a method line on the
right-hand side of the method editor, in the method definition pane. A single method can
contain up to 240 separate lines of code. These lines of code can contain

– commands and functions

– OMNIS notation

– different programming constructs, and comments

Methods 121

OMNIS has over 500 commands that let you do almost anything in your application. A
command can be a very simple instruction like the Open window instance command which
opens the specified window, or a command can perform a complex operation like the Do
method command which calls another method and returns a value. Constructs are specific
programming structures such as While, Repeat, and For loops that combine a number of
separate commands to control program flow or perform complex data manipulation.

OMNIS supports a wide range of functions that you can use in your methods. For example,
you can manipulate dates and times, perform mathematical operations such as sin() and
log(), and return a wide range of system specific information using sys().

Some of the OMNIS commands set a variable called the flag to true or false depending on
the success of an operation. Other commands test the current value of the flag and branch
accordingly. The OMNIS Studio Reference documents whether or not a command affects
the flag.

Comments can either be in-line comments, on the same line as the command, or a Comment
command on a whole line. You can comment out command lines (commands are displayed
as comments) to stop them executing, and uncomment lines of code as required. To make
the code more readable on screen, you can use chromacoding which highlights different
elements (constructs, general commands, comments and variables) in the method in
different colors and styles.

The method editor lets you select multiple lines or entire methods and copy them between
libraries or to and from a text editor. Also you can print methods to the current print
destination.

You can add the code in your method from the keyboard, using point and click, or by
pasting code in text format from the clipboard.

To enter a method from the keyboard

• Add a new class or field method as above, or select the required method name

• Press tab to enter the method definition area, or you can click to the right of the
methods names list to highlight this area

The top line is now the active area and has the focus.

• Type the first few characters of the command

122 Chapter 4—Variables and Methods

The characters typed are a search string, for which OMNIS finds the first matching
command; for example c finds Calculate, en finds End If. If you go wrong, you can press
Backspace to clear the last character you entered. You can use an asterisk to represent
intermediate characters, so o*w finds Open window instance. You can use the + and - keys
to find the next or previous match for the string. A beep indicates there are no further
matches. Typing ; finds the Comment command.

Most commands require parameters or options. Parameters may be calculations or text,
variable or constant names, or some notation. Some commands let you enter parameters
from a list displayed in the command parameters box. Check boxes let you select options.

The Comment line is for in-line comments, indicated by ‘;; ’.
They normally start just after the end of the command, but
you can line them up on the screen by dragging the indent
marker across the screen.

The command line in the method shows options in parentheses and parameters in braces.

Yes/No message Warning (Icon,Sound bell) {Are you sure?} ;; confirm

When writing a method you can use the commands in the Modify menu on method editor
menubar, or their equivalent keys. The most useful is Ctrl/Cmnd-N for inserting a new
command line after the current line.

– Execute Method (Ctrl/Cmnd-E)
runs the currently selected method

– Insert Line After (Ctrl/Cmnd-N)
inserts a new command line below the current
one and tabs to the command list for the next
command

– Insert Line Before (Ctrl/Cmnd-I)
inserts a new command line above the current
one

– Delete Selected Line(s) (Ctrl/Cmnd-D)
deletes the selected line or lines

– Comment Lines>>Comment Selected Lines
(Ctrl/Cmnd-;)
comments out the selected method lines; Uncomment Selected Lines (Ctrl/Cmnd-’)
changes selected commented lines back into commands (if they are valid code)

– Modify Specified Class (F8/Cmnd-8)
opens the class or method specified in the currently selected method line

– Expand Entry Box (Ctrl/Cmnd-U)
opens a window for entering long command parameters such as SQL statements

Methods 123

– ChromaCoding Options
sets the colors and style for command parameters: see the Customizing section at the
end of this chapter

– Modify This Class (F3/Cmnd-3)
This option is applies to window, menu, toolbar, and report classes. When selected it
opens the appropriate class design screen for the current set of methods shown in the
method editor.

To enter a method using point and click

• Add a new method as above, and make sure the required method name is selected

• Double-click on the required group in the command list, indicated by an ellipsis, such
as Constructs...

The list expands to show the commands in the group, and the focus jumps to the first
command in the group.

• Scroll the command list and click on the command you want

Selecting a group and pressing Return also expands the group, and the up/down arrow keys
choose commands. When you select a command, its parameters are shown to the right of the
command list.

• You can tab to any of the parameter entry fields and enter a value or variable name

Entering a method from a text editor
You can paste in command lines from a word processor, text editor, or the OMNIS help
system or on-line manuals, but if the syntax is incorrect the method lines will be commented
out. In particular, if the code contains variables that do not exist in the current method, some
lines may be commented out. In this case, create each variable in the variable pane with the
appropriate name, scope, and type, and try uncommenting the commented lines using
Ctrl/Cmnd-‘ (apostrophe).

124 Chapter 4—Variables and Methods

Editing a Method
You can edit a method whenever you like. Select the method you wish to edit by selecting it
in the list of methods, and proceed as for adding a method. Note that you can insert lines
into the code for a method using Ctrl/Cmnd-I., and you can use the Edit menu to Cut or
Copy and Paste selected method lines.

Reordering and Renaming Methods
OMNIS sorts the methods in a class or field in alphabetical
order and places any methods that begin with $ at the top
of the method list. Furthermore, inherited methods are
placed above any non-inherited methods.

You can drag a method or a number of methods to reorder
them in the method editor. After you have changed the
ordering by dragging, OMNIS no longer sorts the methods
automatically, retaining your ordering.

If you need to rename a method you should use the Find and Replace tool to rename it and
all references to it. You can click on a method name in the method list and rename it, but all
references to this method will be incorrect. When and if you rename a method, the method
list is not resorted until you close and reopen the class.

Construct and Destruct Methods 125

Construct and Destruct Methods
When you open a class, an instance of the class is created. Most classes that you can open
or instantiate contain two methods called $construct() and $destruct(), by default. This
includes window, menu, toolbar, report, and table classes. If you open the class methods for
one of these types of class you will see the $construct() and $destruct() methods in the
method editor. Task and object classes do not have a $destruct() method.

The $construct() method controls the opening or construction of the instance, while the
$destruct() method controls the closing or destruction of the instance. Just before a class is
opened or instantiated its $construct() method is called. Therefore you can place in the
$construct() method any code that you want to be executed as the class is opened. Similarly,
just before an instance is closed or destructed its $destruct() method is called. Any code that
you place in the $destruct() method for a class will be executed as the instance is closed or
destructed.

When you open a class, either using a command or the notation, you can send parameters to
the $construct() method for the class. For example, if you open a window using the Open
window instance command you can send construct parameters which are sent to the
$construct() method in the window.

Note that you do not call the $construct() or $destruct methods using the Do method
command to literally open or close an instance, rather these methods are called
automatically when the class or instance is opened or closed.

Fields can also contain a $construct() method. These are called in the order of the fields on
the window, and before the window $construct() method. You can use the $construct()
method for a field to change the field as it is instantiated. You enter a $construct() method
for a field in its Field Methods, not the Class Methods.

126 Chapter 4—Variables and Methods

Event Methods
Window, report, menu, and toolbar classes can contain field methods. These primarily
handle the events for the objects in the class: entry fields, list boxes, pushbuttons, menu
lines, controls, droplists, and so on. Most window field types, menu lines and toolbar
controls contain a method called $event(), by default, and all report fields contain a $print()
method. If you open the field methods for a window, menu, or toolbar class you will see the
$event() method, and if you open the field methods for a report you will see the $print()
method. For example, if you open the field methods for a standard entry field you will see
the following

Events are detected in the event handling methods using the On command plus the
appropriate event message. Each type of event is reported as a unique event message. All
event messages are prefixed with “ev” plus the name of the event. For example, when the
user enters an entry field an evBefore event is generated, and when the user leaves a field an
evAfter is generated. The default $event() method for an entry field contains two event
handlers, On evBefore and On evAfter, which will intercept the evBefore and evAfter
events. Any code that you enter after each of these event handlers will run when the event
occurs and the appropriate event message is received.

Other types of window field will contain different event handlers. For example, a tab pane
field contains an event handler to detect which tab is clicked on.

For further details about writing event handling methods and controlling events in your
library, see the Events and Messages chapter in the OMNIS Programming manual.

Inherited Variables and Methods 127

Inherited Variables and Methods
A subclass inherits the variables, methods, and properties from its superclass. Specifically, a
class inherits any custom properties and methods defined in its superclass, as well as its
task, class and instance variables.

When you edit the methods for a subclass, you will see its inherited variables and methods
in the method editor. These are shown in color and are listed at the top of the method and
variable names list as appropriate. When you select an inherited method, the code for the
method is not shown, and OMNIS will not let you enter code into an inherited method.

You can override an inherited variable or method by creating one with the same name as the
inherited one, or you can override a variable or method using its context menu.

To override an inherited variable

• Right-click on the variable in the variable pane of the method editor

• Select the Override Variable option from the context menu

To override an inherited method

• Right-click on the method in the method editor

• Select the Override Method option from the context menu

Alternatively for methods only, if you create a method with the same name as an inherited
one, the new one will override the inherited one: the inherited one will not appear when you
next open the method editor for the subclass. The new method will be empty, but will
contain the same parameters as the method in the superclass.

When you override a variable or method, all code in the subclass which refers to the
variable or method in the superclass, now refers to the new variable or method with the
same name. However you can still refer to a variable or method in the superclass using the
$inherited property, that is, $inherited.varname will reference a variable in the superclass,
and $inherited.methodname will reference a method in the superclass.

You can edit an inherited method, or you may want to open the method editor for a
superclass to add a new variable in the superclass.

128 Chapter 4—Variables and Methods

To open the methods for a superclass

Assuming you have opened a class that has a superclass

• Right-click on an inherited variable or method name

• Select the Superclass Methods option from the context menu

or, you can

• Double-click on the method definition area of an inherited method

OMNIS opens the method editor containing the methods and variables for the superclass:
this will be the class at the top of the inheritance tree, not necessarily the class directly
above the subclass you were editing originally.

Code Classes 129

Code Classes
The code class exists as a repository of methods to be called from other classes. This makes
it easier to organize your application with reusable code so that the same method might be
called from, say, a menu and a toolbar. You can execute any method contained in a code
class from within the same code class using the Do method command, or you can call a
method in a code class from any other class using the Do code method command.

You cannot open a code class, therefore code classes do not have instance variables, or
$construct(), $destruct(), or $event() methods. Also you cannot create a subclass based on a
code class.

When you call a method in a code class the current instance does not change, that is, the
instance that contains the Do code method command remains the current instance.
Therefore you can use $cinst in the code class to refer to the calling instance.

To create a new code class

• In the Browser choose Class>>New>>Code

or

• Drag the template called “New Code” into the Browser from the Component Store

• Edit the name of the class

To enter code class methods

• Double-click on your code class, or select it and choose Class>>Modify from the
Browser menu bar

• Right-click in the method list

• Choose Insert New Method and edit the method name

• Enter the method

130 Chapter 4—Variables and Methods

Customizing the Method Editor
A number of options in the method editor let you change its appearance. Most of these are
available via shortcut keys and the View Menu.

– Show Command Palette (Shift-F6/Shift-Cmnd-6)
shows or hides the command list and command parameters box

– Show Method Names (Shift-F7/Shift-Cmnd-7)
shows or hides the method list, enlarging the method definition pane

– Show Variable Panes (Shift-F8/Shift-Cmnd-8)
shows or hides the variable pane, changing the size of the method definition pane

– Show ChromaCoding
displays methods in the current chromacoding colors and styles

– Show V3 Method Numbers
displays the OMNIS 7 method numbers from converted libraries in parentheses after
the method name

– Toolbar
displays the debugger toolbar at the top or right of the method editor, or hides it

– Interface Manager
opens the Interface Manager for the current class which lets you view the public
methods for the class; you can add comments to each method to document the class

– Save Window Setup
saves the existing window configuration for the method editor. All changes that you
make to the window, including changes to column widths in the variable pane, resizing

Customizing the Method Editor 131

the height of the method pane, and so on are saved. After using this option, all further
instances of the method editor are affected

You can change the colors used for chromacoding using the Modify>>ChromaCoding
Options menu option in the method editor menubar. These options set the color and style
(bold, italic) as follows.

Properties Affects

commentcolor
commentstyle

comments

ctrlkeywordcolor
ctrlkeywordstyle

constructs

keywordcolor
keywordstyle

commands

stringcolor
stringstyle

text strings

variablecolor
variablestyle

variables

In addition to the above items the File menu option Print Selected Methods (Ctrl/Cmnd-P)
prints the currently selected method or methods to the current print destination.

The method editor also has a comprehensive debugger. For more information about
debugging your code, see the Debugging Methods chapter in the OMNIS Programming
manual.

132 Chapter 5—Data Classes

Chapter 5—Data Classes
Depending on the type of data you want to enter or retrieve in your client application you
will need to define certain structures in your library to handle this data. These structures are
stored in your library file as data classes. If you want to handle data from a server database
you must create OMNIS schema, query, and table classes that map to the table and column
structures in your server database. On the other hand, if you want to access data on your
local disk, or use any non-client/server setup, you can store it in an OMNIS data file. In this
case you need to design the structure for your data using OMNIS file classes. In addition,
you can use an OMNIS search class to filter the data stored in an OMNIS data file.

OMNIS
Schema or
Query class
Col1
Col2
Col.. .

Server
table
Col1
Col2
Col.. .

OMNIS
data file

OMNIS File
class
Col1
Col2
Col.. .

W indow

Your data.. .

Your data.. .

Your data.. .

This chapter introduces schema, query, table, file, and search classes, and shows you how to
create them. All these classes are covered in greater detail in the OMNIS Programming
manual.

All data classes in OMNIS use the same data types to represent data either on a server
database or in an OMNIS data file. Before you create any data classes you should
understand the different types of data you can represent in OMNIS. These are described in
detail in the Variables and Methods chapter, but they are summarized below.

Data Types 133

Data Types
You can use the following data types for schema columns and file class fields.

Character standard character sets sorted by ASCII value

National standard character sets sorted by national sort order

Number multiple types for representing integers, fixed and floating
point numbers

Boolean single-byte values representing true or false values

Date Time multiple types for representing simple dates and times, or
composite date and times, between 1900 and 2099 to the
nearest hundredth of a second

Sequence proprietary data type for numbering OMNIS data file records

Picture stores color graphics of unlimited size in a platform-specific
format, or in the OMNIS shared picture format

List structured data type that holds multiple columns and rows of
data of any type

Row structured data type that holds multiple columns of data in a
single row

Object uses the definition for its data from an object class

Binary stores any type of data in binary form, including BLOBs

Item Reference stores the full notation of an object in your library or OMNIS

Data Type Mapping
If you are building a client/server application, you need to create a set of schema classes
that map directly to the tables or views on your server database. To do this successfully, you
need to choose the data type for each column that best represents the type of data in your
database server. See the chapters on client/server programming in the OMNIS Programming
manual for more information.

Current Record Buffer
The Current Record Buffer, or CRB, is an area of RAM, that OMNIS uses to hold your
current data. For example, if you are accessing a number of file classes or a SQL view, the
CRB holds the current record or data for those files or view.

134 Chapter 5—Data Classes

Schema Classes
A schema class is a type of data class that represents a table or view on your server
database. A schema class contains the name of the server table or view on your server, and a
list of column names and OMNIS data types that map directly to the columns in your server
table or view. The OMNIS data types defined in your schema class should map to the
equivalent server types, and the column names must conform to any conventions about case
used by the server. For example, if the server column names are case sensitive, the column
names in your schema class must be in the correct case. You can also provide a description
for each column in the schema. Note that schema classes do not support null values.

Schema classes do not contain methods, and you cannot create instances of a schema class.
You can however use a schema class as the definition for an OMNIS list using the
$definefromsqlclass() method, which lets you process your server data using the SQL
methods against your list. When you create a list based on a schema class a table instance is
created which contains the default SQL methods. See the OMNIS Programming manual for
further details about the SQL methods.

Having created a schema class, you can create a SQL form based on the schema to view and
enter data into your server database. Creating SQL forms is described in the Window
Classes chapter.

Creating Schema Classes
This section describes how you create a schema class from the Component Store or from the
Browser.

To create a new schema class

• Drag the template called “New Schema” from the Component Store onto the Browser

or

• Select Class>>New>>Schema from the Browser menu bar

• Name the new schema class

• Double-click on the new schema to open the schema editor

Schema Classes 135

The schema editor lets you enter the name of the server table or view and the column
definitions You can move from column to column in the editor either using the Tab key, by
clicking in the column, or with the keyboard Up and Down arrows.

To define a server column

• Type in a column name

• Select a type from the droplist of OMNIS data types

• Select a subtype if appropriate

• Add a description if required

• Select kTrue or kFalse to indicate whether or not this column is a Primary key; a
Primary key column is a column that will be used in Where clauses

• Select kTrue or kFalse to indicate whether or not this column allows null values

136 Chapter 5—Data Classes

Query Classes
A query class is a type of data class that lets you combine one or more schema classes or
individual columns from one or more schemas, to give you an application view of your
server database. A query class contains references to schema classes or individual schema
columns.

Like schema classes, query classes do not contain methods, and you cannot create instances
of a query class. You can however use a query class as the definition for an OMNIS list
using the $definefromsqlclass() method, which lets you process your server data using the
SQL methods against your list. When you create a list based on a query class a table
instance is created which contains the default SQL methods. See the OMNIS Programming
manual for further details about the SQL methods.

Having created a query class, you can create a SQL form based on the query to view and
enter data into your server database. Creating SQL forms is described in the Window
Classes chapter.

Creating Query Classes
To create a new query class

• Drag the template called “New Query” from the Component Store on to the standard
IDE Browser

or

• Select Class>>New>>Query from the Browser menu bar

Then

• Edit the name of the new query class and press Return

• Double-click on the new query class, or Right-click on the query class and select
Modify from its context menu

• Enter the names of the schema classes or schema columns

Query Classes 137

Note that the Catalog pops up when you open the query class editor, which lets you double-
click on schema class or column names to enter them into the query editor. Alternatively,
you can drag schema class or column names into the query editor. Furthermore, you can
reorder columns by dragging and dropping in the fixed-left column of the query editor, and
you can drag columns from one query class onto another. You can also drag a column from
the schema editor to the query editor.

138 Chapter 5—Data Classes

Table Classes
A table class provides the interface to the data modeled by a schema or query class, and
exists primarily to allow you to override the default methods in the table instance. It
contains the name of the schema or query class it uses, and your own custom methods that
override or add to the default table instance methods. You can use a table class as the
definition for an OMNIS list using the $definefromsqlclass() method, which lets you
process your server data using the methods you added to the table class. See the OMNIS
Programming manual for further details about the SQL methods.

You add methods to a table class in the method editor, and change its properties in the
Property Manager.

Creating Table Classes
This section describes how you create a table class from the Component Store or from the
Browser.

To create a new table class

• Drag the template called “New Table” from the Component Store onto the Browser

or

• Select Class>>New>>Table from the Browser menu bar

• Name the new table class

To associate the table class with a schema or query class

• Right-click on the table class and select Properties from its context menu

or you can

• Click on the table class in the Browser to select it

• Select the View>>Properties menu item from the Browser menu bar

• In the Property Manager, click in the sqlclassname property

• Type a schema or query class name, or select a class name from the droplist

Creating SQL Classes Automatically 139

To add methods to a table class

• Select the table class in the Browser and select the Class>>Methods menu item

or you can

• Right-click on the table class and select Methods from its context menu

or you can

• Double-click on the table class in the Browser

The method editor opens for the table class.

Creating SQL Classes Automatically
You can create SQL classes that map to your server tables or views automatically by
dragging a server table from the SQL Object Browser onto your library in the IDE Browser.

For more details about logging on to a server database using the SQL Object Browser, and
creating SQL classes automatically, please refer to the Accessing your database chapter.

File Classes
A file class defines the template for the types and lengths of the data to be stored in a record
in an OMNIS data file.

Creating File Classes
This section describes how you create a file class from the Component Store or from the
Browser.

To create a new file class

• Drag the template called “New File” from the Component Store onto the Browser

or

• Select Class>>New>>File from the Browser menu bar

• Name the New file class

File class names can be up to 255 characters long, and of mixed case.

• Double-click on the new file to open its editor

140 Chapter 5—Data Classes

To modify a file class

• Select the file class in the Browser and select the Class>>Modify menu item

or you can

• Right-click on the file class and select Modify from its context menu

or you can

• Double-click on the file class in the Browser

The file class editor opens.

In the file class editor you define the fields for the class. The top part of editor lists the
fields in the file class, the middle section lists the indexes for the file class, and you define
the fields for the file class in the bottom section.

For new file classes the first line in the field list is selected, by default, and the cursor is in
the Field Name box. Data types for fields are described in the Variables and Methods
chapter.

File Classes 141

To create a field

• In the Field Name box, enter the name of the field

• Select a data type from the Field Type droplist

for Character, National, and Binary type fields

• Enter the maximum length of the field in the Max Length box

for Number, Date Time, and Object type fields

• Select a subtype for the field in the droplist that opens under the Field Type droplist

• Add a short description for the field, if required

• Select the appropriate radio button depending on whether or not the field can be Null

If the field cannot be Null, OMNIS prevents a record being written to the data file if this
field does not have a value.

• Check the Insert as Empty checkbox if you wish OMNIS to assign an empty value
automatically to the field when a record is inserted

• Check the Indexed checkbox if you want the field to be indexed

• Click on the Index Options button to edit the index

• When you have edited an index, click on the Field Options button to get back to the
field list (or you can click in the field list)

• Click on the next line of the field list, or press Ctrl/Cmnd-N, and enter the next field

When you close the file editor, OMNIS saves the field definitions for the file automatically.

142 Chapter 5—Data Classes

Search Classes
You use search classes with your OMNIS data to select particular types of data for printing,
or to restrict the number of records to be processed in an OMNIS method. For example, you
can use a search class to select all the clients in a certain area, or you can select all
employees with a salary above a certain amount.

Creating Search Classes
This section describes how you create a search class from the Component Store or from the
Browser.

To create a new search class

• Drag the template called “New Search” from the Component Store onto the Browser

or

• Select Class>>New>>Search from the Browser menu bar

• Name the new search class, and double-click on the search class to edit it

Search Classes 143

A comparison line consists of three elements: a comparison field, a comparison type or
mode such as equal to, and a comparison value. A line of the search class can be a
comparison, a calculation, or a logical AND or OR. You enter the comparison fields,
operators, and values at the bottom of the search editor. You can add up to 50 different
comparison lines to each search class.

A search class takes the specified field in each record in your OMNIS data file and
compares it with the value entered in the comparison value box. If a record passes the test
or all the tests in the search class, it is selected for display or printing in a report, and so on.
If a record fails any of the tests in the search class, it is rejected and the next record in your
data file is tested.

To enter a comparison

• Click in or tab to the Comparison field box

• Enter a field name, or select one from the Catalog (press F9/Cmnd-9, locate the field in
the file class, and double-click on its name in the Catalog)

• Select a search type or mode from Comparison, Calculation, AND, or OR

• Click on a comparison type from Greater than or equal, Less than or equal, and so on

• Click in or tab to the Comparison value box and enter text or calculation for the
comparison

The characters you type into the comparison value box are read as a text string. You can use
square brackets to force OMNIS to evaluate the contents of a field, for example, [FIELD2].

• Press Enter when you have finished the comparison line

144 Chapter 6—Window Classes

Chapter 6—Window
Classes

A client application is, from the user's point of view, a collection of windows or forms in
which they enter or view their data. You define the appearance and behavior of each
window in your application as a separate window class.

This chapter describes how you create windows or forms using the templates and wizards in
the Component Store, how you add fields and other objects to a window, and how you
modify these objects using the Property Manager.

Each window class can contain a number of fields, controls, and graphical objects which
you can create from the Component Store. You can put an unlimited number of fields on a
window, and you can open any number of windows, except under 16-bit Windows you are
limited to a maximum of 50 open windows due to an operating system restriction.

The Component Store contains a number of window templates and wizards for you to use as
a basis for your window classes. You can however add your own templates to the
Component Store and change the default ones, and how to do this is described in detail in
the Library Tools chapter.

Creating Windows using Wizards
This section describes how you can create a window class automatically, using a wizard
from the Component Store. A window you create in this way contains a number of fields
that map directly to schema, query, or file class fields in your library, which lets you view
data on your server or OMNIS database. Before you can use window wizards you must
create the schema, query, or file classes necessary for SQL or OMNIS data access; this is
described in the Data Classes chapter. The following wizards are available

SQL Form Wizard
creates a form or grid based on a schema or query class; each separate field
or grid column on the new window maps to a schema column

OMNIS Form Wizard
creates a form or grid based on a file class; each separate field or grid
column on the new window class maps to a file class field

Creating Windows using Wizards 145

The SQL and OMNIS Form wizards let you select either a form or grid window to display
your data. Other templates in the Component Store let you create basic forms or grids only,
including

SQLColumns
standard form based on a schema class

SQLGrid
non-enterable grid based on a schema class

SQLSmartlist
enterable grid based on a schema class with Commit and
Revert All buttons

SQLParChild
form that uses a parent-child or one-to-many join

FileFields
form with one window field per file class field, plus standard
OMNIS database controls such as Next, Find, Previous

FileGrid
grid window with one column per file class field

FileIVars
form with one window field per instance variable mapped to
each file class field, plus standard OMNIS database controls;
this window lets you display records in separate window
instances

To create a window class using a wizard

• Open your library in the Browser, and display the classes using the View>>Down One
Level menu option on the Browser menu bar

• Open the Component Store or bring it to the top using F3/Cmnd-3

• Click on the Window Classes button in the Component Store toolbar to show all the
window templates and wizards

146 Chapter 6—Window Classes

• Drag a SQL or OMNIS Form Wizard, or other window template from the Component
Store onto your library in the Browser

• Name the new window class and press Return, or click in the Browser

Creating Windows using Wizards 147

The Window Wizard dialog lets you choose between a simple form or grid view, and is
displayed for the SQL and OMNIS forms only; for some of the basic templates this dialog
does not appear. The SQL Form wizard lets you choose a window style from the following

– Field per column from a schema or query class
standard form that displays your server data and contains one window field per SQL
column; allows selection of individual columns, based on an OMNIS schema or query
class that maps to your server table columns

– Display grid from a schema or query class
non-enterable grid that displays your server data; allows selection of individual
columns, based on an OMNIS schema or query class

– Enterable grid from a schema or query class
enterable grid with Commit and Revert All buttons to view and edit your server data;
allows selection of individual columns, based on an OMNIS schema or query class

– Parent/child window from two schema or query classes
form that uses a parent-child or one-to-many join; prompts you for a parent and child
table, and parent key and child key; allows selection of individual columns within the
tables, based on OMNIS schema or query classes

148 Chapter 6—Window Classes

The OMNIS Form wizard lets you choose from a similar set of window styles, but based on
file class fields for displaying your OMNIS data, as follows

– One field per file field
form with one window field per file class field, plus standard OMNIS database controls
such as Next, Find, Previous

– One instance variable per file field
form with one window field per instance variable mapped to each file class field, plus
standard OMNIS database controls; this window lets you display records in separate
instances of the window

– Display grid based on file class
non-enterable grid with one column per file class field

If you click Cancel at any time, the wizard is halted and the new class is removed from your
library. To continue

• Choose a window style, and click on Next

The Window Wizard now displays all the available SQL or file classes in your library and
lets you select which table columns or file fields you want to include on your form. You can
expand a particular table or file to include or exclude individual columns or fields, but you
cannot include different columns or fields from different classes (although a query class

Creating Windows using Wizards 149

may include columns from more than one schema). If you check a SQL or file class name
without expanding it, all the columns or fields from that class are included on your form.

• Choose a schema, query, or file class to base the form on, or select individual server
columns or file fields in a class, and click on Next

For SQL forms only, the wizard prompts you to choose a session for the form, or you can
leave the session names unchecked to use the default session.

• Finally, click on Create to create the form

150 Chapter 6—Window Classes

When you finish in the Window Wizard the new window class is opened ready for you to
modify or open to view your data. To modify your window you need to edit its properties.
You can also add new window objects from the Component Store, and you can add methods
to the window class or the objects on the window. These are all described in this and
subsequent chapters.

To open or test your window

• Assuming the design window is on top, press Ctrl/Cmnd-T to open your window

or you can

• Right-click on the background of your window class, and select Open Window from the
context menu

or from the Browser you can

• Right-click on the new window class, and select Open Window from its context menu

While you create and modify any window class you can use the Ctrl/Cmnd-T shortcut to
toggle between the design and open window to see how it looks and behaves. Assuming you
are logged on to a server or OMNIS data file, you can view and edit your data in the new
window.

Creating Windows using Wizards 151

Default Window Template or Wizard
The default window template or wizard is the one used when you create a new class using
the Class>>New>>Window menu option in the Browser, and it’s also the class shown under
the Default Classes button in the Component Store toolbar. The default window template
appears under the Window Classes button in the Component Store, shown by a check mark
on the template icon. However, you can change the default template for window classes.

To change the default window template or wizard

• In the Component Store toolbar, click on the Window Classes button

• Right-click on the class or wizard you want to make the default

• Select the Make Default option from the context menu

For example, you can make the SQL Form Wizard the default template and from thereon,
when you use Class>>New>>Window in the Browser, the SQL Form wizard will be called
by default. When you click on the Default Classes button in the Component Store, the
template or wizard you set as the default is shown. The remainder of this chapter assumes
that the class called “New Window” is the default class.

152 Chapter 6—Window Classes

Creating a New Window
This section describes how you can create a window class from the Component Store or
from the Browser using the New Window template. Unlike windows you create using the
wizards, new windows created in this way contain no fields, methods, or any other window
components, but this lets you create your window entirely from scratch.

To create a new window

• Open your library in the Browser

• Display the classes in your library using the View>>Down One Level menu option on
the Browser menu bar

• Drag the template called “New Window” from the Component Store onto the Browser

or

• Select Class>>New>>Window from the Browser menu bar

The name of the new class is highlighted in the Browser, to continue

• Name the new window

• Double-click on the window class to modify it

When you create a new window from the Component Store or Browser it is completely
blank, that is, it does not contain any data entry fields or controls, and has only a simple
frame and title bar. Having created your window, you can change its style and appearance
and start to add fields from the Component Store.

Window Types 153

Window Types
This section describes the different types of window available in OMNIS and tells you how
to change the style of your window using the Property Manager. The next section describes
window properties and how you modify them to change the behavior of your window.

You can create many different types of window: you can change their size, you can add
scroll bars, you can hide or show the title bar, you can choose a different frame style or a
window can have no frame at all. Also you can change the background color and pattern of
each window in your library. All these visual features are properties of the window. You can
change these and many other aspects of the window appearance and behavior using the
Property Manager. When you open a window class to modify it the Property Manager
should open automatically showing the properties of the current window.

To view the properties of a window

• Right-click on your window name in the Browser

• Select the Properties option in the context menu

or

• Select your window name in the Browser and press F6/Cmnd-6

or, if you open a window to edit it and for some reason the Property Manager does not pop
up, you can

• Click on the background of the window design screen

or

• Right-click on the background of the window design screen

• Select the Properties option in the context menu

The Property Manager shows the general, appearance, and action properties of the current
window class.

154 Chapter 6—Window Classes

To change the style of a window

• View the properties for your window class, as above

• Click on the Appearance tab in the Property Manager

• Click on the style property and select a style from the dropdown list

The Appearance properties of a window class

The other appearance properties control the window frame and its controls, that is, whether
or not your window has scroll bars, a close box, zoom or grow box, as well as the color and
pattern of your window background, and so on. Note that you cannot set some of these
properties for some types of window.

You can further modify the 3d effect of the window background for all types of window
using the effect property. For example, you can make a window frame flat, inset, embossed,
beveled, chiseled, or shadowed.

The Appearance tab contains the edgefloat property. When the size of the area available to
window instances changes, open window instances and window classes float according to
the value of their edgefloat property. The default value of this property is kEFnone.

Window Properties 155

Window Properties
This section describes the various window properties and how you modify these using the
Property manager to change the behavior of your window. You can modify any window you
create from the Browser or Component Store, including those you have created using a
window wizard.

The General properties for a window determine the many visual aspects of the window
including its title, size, and whether or not it has a menubar, toolbar, or status bar. Also you
can set up a design grid in your window to help you place objects accurately. You may need
to scroll or resize the Property Manager to view all the window properties.

The General properties of a window class

156 Chapter 6—Window Classes

For details about the general class properties such as name, desc, classtype and setting the
designtaskname property, see the Libraries and Classes chapter. More advanced features
such as inheritance, adding help, or making your window a template or component are
described in the OMNIS Programming manual. Many of the other window properties are
self-explanatory, and in general you simply need to set the property to hide, show, or enable
a particular window component. They are summarized as follows.

title the window title

top position of the top edge of the window in pixels

left position of the left edge of the window in pixels

height height of the window in pixels

width width of the window in pixels

startfield first enterable field on the window

hasmenus enables the window menu bar

menunames comma separated list of menus on the window menu bar

toolbarpos position of docking area in the window

toolbarnames comma separated list of toolbars for the window

hasstatusbar if true the window has a status bar

helpfile name and path of help file for the window

contextmenu name of the context menu for the window

showgrid if true the design grid is shown

aligntogrid if true objects align to the design grid

sizetogrid if true objects are sized to the design grid

horzgrid horizontal size for the design grid in pixels

vertgrid vertical size for the design grid in pixels

To create simple, easy-to-use data entry windows you can accept many of the default
settings for the majority of window properties. The top and left properties position the
window relative to the OMNIS application window. The properties hasstatusbar,
hasmenus and toolbarpos control whether or not the window has its own status bar, menu
bar, and toolbar respectively. A window toolbar can be at the top, bottom, left or right of the
window. You can enter toolbar names as a comma-separated list in the toolbarname
property, or drag them onto the window toolbar from the Browser. Similarly, you can drag
menus onto the window menubar from the Browser. You can set the border style of the
window menu bar, toolbar, or status bar by setting the menuedge, dockingedge, or
statusedge properties under the Appearance tab. Double-clicking on the toolbar or on a
menu title opens the appropriate editor. To remove a menu or toolbar, simply drag it off the
window.

The Action properties for a window class need further explanation. These properties control
the behavior of the window when you use the window to enter data. Several of the

Window Properties 157

properties let you make a window modal, that is, when such a window is opened it disables
the main menu bar, it does not allow any clicks behind it, and it always appears on top of all
other types of window, regardless of their properties or behavior. This means the user has to
do something in your window, such as enter a value, before it will close or give them access
to other parts of the application.

showcommands shows the Commands menu in the main menu bar when
this window is opened or brought to the top: this menu
contains standard OMNIS database commands such as
Find, Next, Previous, etc.

clickbehind if true allows clicks behind this window, that is, it lets the
user bring another window to the front of this one by
clicking on it

keepclicks determines whether or not controls on this window
receive clicks when it is brought to the front

enablemenuandtoolbars enables or disables the main menu bar, so you should use
this with caution: when set to false, this property adds to
the modal behavior of the window

bringinfront opens this window on top of all other windows, including
palettes: again, this property adds to the modal behavior
of the window

modelessdata if true the window is modeless instead of an enter data
mode window: see below

dropmode determines the type of data the window accepts using
drag and drop: this can be all types, or specific types
including edit, list, or picture fields

158 Chapter 6—Window Classes

Modeless Enter Data vs Enter Data Mode
In applications that use data files as opposed to the client/server interface, OMNIS needs to
ensure that two users cannot edit the same record. It does this with enter data mode, a style
of window behavior that forces methods to activate controls on the window to allow data
entry. OMNIS provides standard database controls (Insert, Find, Previous, etc) in this mode
of data entry and also installs the Commands menu with these commands when a user opens
the window.

Client/Server applications, however, have transaction management built into the server and
do not require this extensive, client-side record locking. When prototyping for client/server
applications, you should instead choose modeless enter data, an alternative style of window
behavior that leaves all fields enterable at all times, subject to the properties of the field.
You need to code the SQL to query, insert, update, or delete rows from the server as
methods behind the appropriate window buttons and controls.

Window Fields and Properties
This section describes the different types of window field that are built into OMNIS, and
tells you how to create them from the Component Store and the Catalog. It also describes
the properties of window fields, and how you modify these to change the field’s appearance
and behavior. Graphical objects such as lines and ovals are described under the Background
Objects section. You can also place external components on a window and these are
described later in this chapter.

The single-most important property of a window field is its dataname, that is, the name of
the variable, table column, or file class field the window field uses to display or insert its
data. Almost all types of window field have a dataname property which you must set in the
Property Manager when you create a field. The dataname for most types of grid or list field
is the name of your list variable used to display data in the object.

When a window class is the top window, the Component Store contains window fields and
other components; if the Component Store does not display fields try clicking on your
window. The Component Store toolbar includes different groups of fields and components,
including background objects, subwindow fields, and external components. The Standard
Fields button is selected by default.

Window Fields and Properties 159

Under the Standard Fields button in the Component Store there are many kinds of OMNIS
field, each with different characteristics and data handling capabilities.

Field type Description

Cursor
deselects all buttons in the Component Store and
returns the cursor to the pointer tool

Entry Field
a field for entering data or a read-only field for
display only

Masked Entry Field
a standard entry field, but contains a formatting
mask to control what the user can enter

Multi-line Entry Field
a multi-line field for entering data or read-only
field for display only

Pushbutton
a control field that runs a method or command
when you click on it

Button Area
an invisible control field that runs a method or
command when you click on it

Radio Button
a toggle field for one out of several mutually
exclusive choices

160 Chapter 6—Window Classes

Field type Description

Check Box
a toggle field for on-off, yes-no, 1 or 0 boolean
choices

Picture
a screen area into which you can paste or display
graphic images

Shape Field
a graphical object that has certain properties of a
field including events

Subwindow
a field that contains another window class

Popup Menu
a field that pops up a menu when you click on it

Popup List
a list that pops up when you click on it and from
which the user can make a choice

Dropdown list
a list that drops down when you click on it and
from which the user can make a choice

Combo Box
a droplist that also lets you type in a value directly
into the field

List box
a multi-line list field with scroll bars

Headed List Box
 a list field with button style column headers and
adjustable column widths.

Window Fields and Properties 161

Field type Description

String Grid
a grid field for displaying character data

Data grid
a grid field for displaying character or numeric
data

Complex Grid
a multi-line field with columns and rows

Check List
a list in which each line can be selected using a
checkbox icon

Icon Array
a list field that lets you present a series of choices
each represented by a large or small icon

Tree List
a hierarchical list with expandable and collapsable
nodes

Tab Strip
a multi-tabbed control for switching the context of
the objects on your window

Tab Pane
a multi-pane field with tabs that lets you add fields
and other objects to each pane

Paged Pane
a multi-pane field that lets you add fields and
other objects to each pane

Group Box
a field container with border and title text

162 Chapter 6—Window Classes

Field type Description

Scroll Box
a scrollable container field for other fields and
objects

Modify Report Field
a field that displays a report class; lets users
change certain aspects of the report

Screen Report Field
a field that displays a printed report in your
window

You can place a window field on your window from the Component Store and set its
dataname property in the Property Manager, or you can drag a variable or field from the
Catalog to create a field automatically.

To create a window field from the Component Store

• Open your window in design mode

• Drag the required field type from the Component Store onto your window

or, to draw a field of a particular size

• Select the required field type in the Component Store by clicking on its icon

• Click and drag on your window to define the size of field you want

or, to place a field on your window automatically

• Double-click on the appropriate icon in the Component Store

When you double-click on an icon in the Component Store a field of that type will appear in
the center of your window. You can repeat this as many times as you want to place multiple
copies of the same type of object.

When you select a field in the Component Store, that button remains selected until you
place the field. If you want to change your mind and not place the field, click on the Cursor
control in the Component Store, and the previously selected tool will be deselected.

Window Fields and Properties 163

To create a window field from the Catalog

• Open your window in design mode

• Open the Catalog and locate your variable, column name, or file class field under the
Variables tab

• Drag the required variable onto your window

When you place fields by dragging variables from the Catalog, OMNIS creates a field of the
correct type and sets its dataname property to the name of the variable, column, or field.
For example, if you drag a character or number variable onto your window OMNIS creates
a standard entry field, if you drag a list or row variable OMNIS creates a list box field, and
so on. You cannot drag some types of variable, such as item references and binary variables.

There are a number of restrictions that apply to dragging variables from the Catalog to
create fields.

– You can drag fields of type date, number, sequence, character, boolean and picture only

– You cannot drag local and parameter variables

– You can only drop class and instance variables on to the class to which they belong

– You can only drop task variables on to classes belonging to the same design task

Examining and Changing Field Properties
When you place a field on a window, using any of the above methods, the Property
Manager will open showing the properties of the field, but if for some reason the Property
Manager does not come to the top you can open it in a number of ways.

To view the properties of a field

• Open your window in design mode

• Click inside the field and the Property Manager opens automatically

or

• Right-click on the field

• Select the Properties option in the context menu

or to bring the Property Manager to the top

• Select the field, or any other object, and press F6/Cmnd-6

164 Chapter 6—Window Classes

Entry Fields
An entry field is a type of window field into which you can insert data or view existing data.
In OMNIS there are several types of entry fields available: standard entry field, masked
entry field, and multi-line entry field. You can modify an entry field to create a display or
local field that you can use to display data.

This section describes the properties of entry fields. Additional properties for such field
types as tab panes, pushbuttons, and picture fields, are discussed separately.

The General properties of an entry field created from the Component Store

For entry fields the Property Manager shows General, Text, Appearance, and Action
properties. Note that once you have placed a field on your window you cannot change its
objtype. To create a field of another type you have to create a new field from the
Component Store.

Window Fields and Properties 165

General Properties
Most types of field have these general properties and many of them are self-explanatory.
These properties control the overall behavior and appearance of the field. All fields and
window objects have a name which can be any name you choose to identify the object.
There is no restriction on the name of an object, but you should try to use unique names
within the same class to avoid possible confusion or errors when you refer to the object. All
data fields have a dataname property, and all fields have a particular size and position, set
up using the left, top, width, and height properties. Here is a complete list of general
properties for an entry field and a short explanation for each.

name the name of the field; this can literally be anything you want,
although it has to be unique in the context of its window

dataname the name of the variable, column, or file class field the window field
uses to display or insert its data

calculated for display fields only, computes the field value from the text or
calculation in the text property

text the calculation for calculated fields, also the text for a check box or
radio button

ident unique numeric identifier of the field: all objects are numbered
consecutively on the window, including background objects

top position of the top edge of the field relative to the window border in
pixels

left position of the left-hand edge of the field relative to the window
border in pixels

height height of the field in pixels. Set it to -1 to set the field height to its
default value

width width of the field in pixels: you can change this and the height
property in the Property Manager to size the field exactly

objtype the type of window field: once you create a field you cannot change
its objtype

order the tab order, that is, a number that controls the tabbing order of
fields: you can renumber fields to change the tab order

visible if true the field is visible: otherwise you can hide the field at
runtime by setting this property to false

active if true the field is active: if false, the user cannot enter the field, tab
to it, or do anything else to it; this lets you completely disable the
field except for mouse events

enabled if true you can enter this field and change its data and so on: if false
the field becomes a read-only display field

166 Chapter 6—Window Classes

tooltip the text to show in the tooltip for the field

helpfile the name of the file containing the help topic for the field

contextmenu the name of the menu class that pops up when the user Right-clicks
on the field

local if true the field recalculates and redraws when the previous, non-
local field changes

unqindex if true the field is checked for a unique index value (for indexed
fields in an OMNIS data file only); when you try to leave the field,
OMNIS checks that the value does not already exist in another
record

negallowed if true you can enter negative values

Most types of field have a dataname property. When you create a field that you want to
contain or display data, you must set this property. This establishes a link between the field
on your window and the variable, column, or file class field that the window field
represents. You can set the dataname property for a field in the Property Manager, or when
you create a window field from the Catalog, as described above, the dataname is set for you
automatically.

For entry fields, the dataname is a simple variable or field name as defined in the class. For
grid and list fields the dataname is the name of the list variable that contains the list data.
Popup menu fields do not have a dataname: you specify the name of the menu class in the
menuname property. Pushbuttons do not have a dataname: you use buttons as controls
hence they do not contain data. Other types of field such as group boxes and shape fields
are for screen layout only and do not have a dataname, since they cannot contain data. The
unqindex property is for window fields that access OMNIS data only, not server data.

Masked entry fields have the additional general properties

formatstring data entry formatting string for the field

formatmode type of formatting string for the field, either Character,
Integer, Number, Date

inputmask input mask for the field

The formatstring property stores a set of characters or symbols that formats the data in a
masked entry field for display, regardless of how the data is stored. The inputmask
property contains a string that formats data as the user enters it into a field. When a user
enters data into a field controlled by an input mask, OMNIS rejects any characters that do
not conform to the format you’ve specified in the mask.

To enter a format string for a masked entry field, you need to specify the type of data
represented in the field by setting its formatmode property: you can set this to Character,
Number, Date, or Boolean. You can enter a format string manually or use one from the
dropdown list in the formatstring property. The default formats in this dropdown are stored

Window Fields and Properties 167

in a system table described in the Window Programming chapter in the OMNIS
Programming manual.

Text Properties
You can change the font style, size, and color of a window field’s text by setting its text
properties. You can set the fontstyle property to plain, bold, italic, underline, and so on.
The textcolor property can be one of the color constants or an RGB value.

fieldstyle the field style for the object: OMNIS has some default styles
for standard entry fields, pushbuttons, and lists, but you can
define your own or change the default ones, described in the
Window Programming chapter in the OMNIS Programming
manual.

font font type for the field

fontsize font size for the field

fontstyle font style for the field

textcolor text color of the field

align alignment or justification of the field

subwindowstyle applies to fields in subwindows; if true the field uses the text
styles defined for the subwindow field, otherwise if false it
uses its own text styles defined in the subwindow class

Appearance Properties
You can change the overall appearance of a field by setting its appearance properties.
Different fields have different properties, but the most common are listed below. The color
properties take a system color constant or an RGB value which you can choose from a color
picker in the Property Manager. To set the colors for a pattern, you need to set the
foreground and background color.

forecolor foreground color of the field

backcolor background color of the field

bordercolor border color of the field; only applies to certain effects

backpattern background pattern of the field

edgefloat floating edge property for the field: you can make the top, left, right,
or bottom edge of a field floating, or combinations of these: also you
can size a field to fit into certain positions in the container field, such
as toolbars, status bar, menu bar, or the available client area

dragborder whether you can drag the field’s borders or not; only applies to fields
with a kEFposn... edgefloat property set

horzscroll for single-line entry fields allows the data in the field to scroll
horizontally; for multi-line entry fields, enables a horizontal scroll bar

168 Chapter 6—Window Classes

for the field

vertscroll for multi-line entry fields, enables a vertical scroll bar for the field

uppercase converts all text to upper case characters

zeroempty displays zero values as blanks

shownulls displays "NULL" for undefined values

linestyle line style for the border of the field; only applies to certain effects

effect the border style for the field; for example inset, beveled, chiseled or
shadowed

Note that the appearance of grid and list fields is discussed in the Lists and Grids chapter.

Action Properties
The action properties let you set up the drag and drop modes of a field. This feature lets you
select data, drag it to a different part of your application, and drop it onto another field or
window.

dragmode turns on drag and drop for the field: you can drag the data in a
field, or the field itself, or a duplicate of the field

dragrange drag range or scope of what you drag from the field, a constant

dragiconid id of the icon for the field when it is dragged

dropmode specifies the type of data this field accepts

autotablen the number of characters the user can type before OMNIS tabs to
the next field automatically

autofind the field performs an automatic find (for indexed fields in an
OMNIS data file only); when you leave the field, OMNIS looks
for a matching record in the indexed data file field you specify

Password Entry Fields
Single line entry fields have a property passwordchar which specifies the character to be
displayed for every character entered in the field. When the property is set, the data in the
field cannot exceed 255 characters, and while the focus is on the field the Cut and Copy
items on the Edit menu are disabled.

Window Fields and Properties 169

Local Fields
A local field is a field that depends on the value of the prior field in the tab order. OMNIS
redraws these fields immediately after redrawing or changing the prior field. You usually
use local fields to display data changed as a result of an entry in a preceding field. OMNIS
will not automatically execute the field procedure on recalculation. You can have more than
one local field running in sequence after a non-local field.

Using a local field after a list box, you can set up a spreadsheet-like edit bar for a selected
list line. When you select a line in a list, the local field changes to display that line; you can
then edit the line and put the updated line back into the list.

A calculated display field following a field you specify as part of the text or calculation
should have the local property to ensure up-to-date display of the display field value.

Display and Inactive Fields
A display field is a type of window field that you use to display data only, that is, the user
cannot enter data into a display field. To change a standard entry field into a display field
you change its enabled property to false; to display data in the field you set its calculated
property to true and enter the data in its text property. The user can’t tab to a disabled
display field or click in it and enter data, but a display field still accepts mouse events, such
as mouse leave events. To make a field completely inactive you need to change its active
property to false, regardless of its enabled setting. Such an inactive field does not receive
mouse events and you cannot enter data into it.

Entry and Display Field Calculations
You can specify a validation expression for the data in the field. You can use input masks to
force the user to input data in certain basic formats, but more complex logical constraints
require an expression. To make a calculated field you must set its calculated property to
true. You can enter an OMNIS expression into its text property. When the user leaves the
field, OMNIS validates the data using the expression. If the expression evaluates to false,
OMNIS beeps and returns the cursor to the field. For display fields, the text property lets
you enter a character or numeric value or OMNIS expression that is displayed in the field.

Check Boxes and Radio Buttons
Check boxes represent boolean data, that is, they
can display On or Off choices, Yes or No, and 1
or 0 values. Radio buttons present a number of
mutually exclusive buttons that can be either on
or off: selecting one of the radio buttons deselects
all other buttons in that group. You must number
radio buttons consecutively in the tabbing order.

Check boxes Radio buttons

170 Chapter 6—Window Classes

The field you associate with the check box should be a number or Boolean field. The field
you associate with radio buttons should be numeric. Checking a check box sets the value of
the field to one; unchecking it off sets the value to zero. Clicking a radio button sets the
value of the field to zero for the first button, one for the second button, two for the third
button, and so on.

You enter the text to display to the right of the check box or radio button in the text
property for the object. OMNIS calls the field method for check boxes and radio buttons
when you click on the field.

Pushbuttons and Button Areas
Pushbuttons are control fields that activate either user-defined
methods or standard OMNIS database commands such as Find,
Next, and Previous. When you click on a user-defined button,
OMNIS sends the appropriate message to the button and runs its $event() field method.
Button areas behave in exactly the same way except that they are invisible on an open
window (shown with a dotted or gray line in design mode). Button areas let you place an
invisible and clickable control on top of a graphic, or behind the whole window.

You set the text for a pushbutton in the text property. Under Windows, you can use the "&"
character before a letter to specify a key to use with Alt to push the button from the
keyboard instead of with a mouse. For example, if you specify the text "&Cancel Tour", you
can use the Alt-C key combination to activate the button.

Pushbuttons have some additional Appearance properties.

nogray if true the button does not gray when inactive

noflash if true the button area does not flash when clicked (button
areas only)

buttonstyle the drawing style of the button

iconid id of the icon used for picture buttons

And some extra Action properties.

buttonmode mode or type of pushbutton or button area; buttons are user-
defined by default which means you can add your own method

actedata if true the button is active during enter data; note the button will
not work if this is set to false, in particular on modeless enter
data windows

actnomethod if true the button is active when no methods are running; note
the button will not work if this is set to false

inactnorec if true the pushbutton is inactive when there is no current record
(applies to OMNIS data files only)

Window Fields and Properties 171

When you create a pushbutton from the Component Store its buttonmode is kBMuser or
user-defined by default. This means you can enter your own method behind the button
which will run when the user clicks on the button. Other button modes run standard methods
including the OMNIS database commands such as Insert, Find, Next, and OK.

Pushbutton Picker Palettes
You can place color picker, line style picker, and pattern picker controls on windows. These
types of button are specified as different button modes: kBMcolorpicker,
kBMlinestylepicker, and kBMpatternpicker. When the user clicks on a button with one of
these modes, OMNIS displays the appropriate picker palette. Note that the button does not
generate an evClick event at this point. Instead, the button generates evClick after the user
selects an item from the palette. The $event() method can obtain the selected value by using
the $contents property of the pushbutton, which is a long integer. Pushbuttons with these
button modes cannot have an icon, since the sample of the current color, pattern, or line
style is displayed in the button.

Tab Pane Fields
Tab Pane fields have a number of panes on which you can
place other fields. When the user clicks on a tab its
associated pane is brought to the front displaying the
objects on that pane. This type of field is useful for Options
or Preference-style dialogs. The standard field properties
control the overall size, position, and border style of the
tabbed pane field, whereas each tab or pane has particular
properties.

To add objects to a pane you have to click on the
appropriate tab and drag the fields or background objects onto the pane. When you position
an object over a pane, the border of the pane will highlight. To show any field or
background object on all panes, right-click on the object and select the All Panes option
from the context menu. You can move an object from one pane to another by dragging the
object over the appropriate tab, pressing the Alt/Cmnd key to change the tab, repositioning
the object on the new tab, and releasing the mouse.

The tab pane field type has several special properties under the General and Appearances
tabs in the Property Manager. On the General tab, there is

tabcount number of tabs or panes

currenttab the tab or pane currently selected

172 Chapter 6—Window Classes

In addition to the normal Appearance properties of a field, tab panes have the following;
note that you can set the color and pattern of the area behind the tabs to blend in with your
window background.

taborient the position of the tabs: either at the top or
bottom of the field

tabstyle border style of the panes, a constant:
kDefaultPanes, kSquarePanes, kRoundedPanes,
kTrianglePanes

imagenoroom when insufficient room shows just picture and
not text for each tab

showimages shows icons or pictures for each tab

showfocus shows the focus for the selected tab

multirow if true forces the tabs to stack rather than
providing a scroll bar

forecolor forecolor behind the tabs

backcolor backcolor behind the tabs

backpattern pattern for the area behind the tabs

You can set the following properties for each pane on the Pane tab of the Property Manager.

tabcaption text or label for the tab

iconid id of the icon for the tab: enable showimages for
the tabbed field to display icons

tabtooltip tooltip for the tab

Page Pane Fields
Page Pane fields are like Tab Panes but without the tabs. The pagecount and the
currentpage property on the General tab in the Property Manager determine how many
panes the field has, and which is currently visible for the placing of other fields. In design
mode, you cannot click on the separate panes, so you need to set currentpage to bring a
pane to the top. At runtime, you can use a method to set the currentpage property to bring
a pane to the top. Like tab panes, page panes are useful for Options or Preference-style
dialogs, or for creating your own wizards in which you need to step through a number of
stages under the control of a method behind the field or window.

Tab Strip Fields
Tab Strip fields contain a number of tabs, only one of which can be
selected at any time. You can add a method to a tab strip field that
responds to whichever tab the user clicks, so it is very similar in
operation to a set of radio buttons. You set the text and number of tabs for the tab strip by

Window Fields and Properties 173

entering a comma-separated list in the tabs property. For example, the text Bob,Mary,Fred
will enable three tabs for the field with the specified text. The tab strip field type has several
other special properties under the Appearance tab in the Property Manager.

backcolor color in the area behind the tabs; turn off ditherbackground
to get a solid color

selectedtabcolor the color of the selected tab

tabcolor the color of the tabs

selectedtabtextcolor color of the text on the selected tab

tabtextcolor the color of the text on the tabs

showedge whether or not to show the edge of the tab strip

ditherbackground whether or not to show the dithered background for the field

overlap the overlap for the tabs in pixels

leftmargin the indent for the left tab in pixels

Picture Fields
Many server databases let you store graphics, usually in binary fields or BLOBs. You can
display these using an OMNIS picture field. You can paste any kind of graphical data into a
picture field from the clipboard with Edit>>Paste, or you can read a Windows bitmap or
metafile or a Mac PICT format file directly with the Edit>>Paste From File menu item. The
focus for a picture field is shown as a dotted line around the field. Note that you can also
link or embed pictures into your database using the OLE Picture external component.

If you set the sharedpictures library preference OMNIS will store pictures in a proprietary
format valid across all platforms supported in OMNIS. Storing pictures in shared picture
format can result in slower displays and may increase disk storage. Once you put pictures in
shared format, you can convert them back again by copying them to the clipboard. When
you paste, the picture will appear in a standard graphics format.

The noscale property for picture fields is visible in design mode and in particular in the
Property Manager. If set to kFalse (the default), pictures are scaled to fit the size of the
picture field, otherwise if kTrue, pictures are not scaled retaining their aspect ratio.

174 Chapter 6—Window Classes

Group Boxes and Scroll Boxes
Group boxes and scroll boxes let you
group other fields on your window.
They do not contain or display data
themselves, they simply contain other
fields and controls. You can create them
from the Component Store and drag
other fields within their borders.

You can edit the label for a group box
in its text property. You can place any number of fields in a scroll box: this lets you place
more fields on your window in a smaller confined area. Group and Scroll boxes can contain
methods including a $event() method to detect events.

Shape Fields
Shape fields are graphic objects that have some general field properties, such as visible,
active, and enabled. Therefore you can hide a shape field, make it inactive, or disable it
just like an ordinary field. Shape fields can contain methods including a $event() method to
detect events, so you can detect when the mouse enters or leaves the field. A shape field can
be a rectangle, line, or text object.

Other Fields
List and grid fields, including combo boxes, dropdown lists, check lists, and popup lists, are
described in the Lists and Grids chapter.

Popup menus are discussed in the Menu Classes chapter.

Subwindows, icon arrays, complex grids, data grids, string grids, headed list boxes, tree
lists, modify report fields, and screen report fields are described in the Window
Programming chapter in the OMNIS Programming manual.

Field Numbering and Tab Order
OMNIS assigns a number to each field as you place it on your window. This number is
stored in the order property for the field. When you open a window and tab from field to
field, OMNIS uses the order of these field numbers to guide it in moving to the next field
regardless of the position of the field on the window. This lets you control how the user tabs
or moves between fields. Note that background objects do not have a field number.

To show field numbers for the current design window

• Right-click on the window background

• Select the Show Field Numbers menu item from the window context menu

Window Fields and Properties 175

You can reorder the fields on your window, and hence change the tabbing order, by
changing the order property of one of the fields: you can do this in the Property Manager
for the field. When you change the order number for one field, other fields on your window
will change too. OMNIS numbers the fields from top-to-bottom, and left-to-right, so when
you change the number of a field, the other numbers will appear to shuffle or rotate.

You may have to experiment with the field numbers to achieve the tab order you want.
When you open your window the cursor will move to the first field: the one numbered 1.
Then as you press the tab key the cursor will move to each field in turn.

You can further control tabbing in the window using the autotablen property under the
Action tab in the Property Manager. This property determines the number of characters you
can type before OMNIS tabs to the next field automatically. For example, if you enter 4 for
autotablen, the cursor will tab to the next field when you try to type a fifth character. The
fifth character is ignored and the cursor jumps to the next field in the tab order.

Adding Tooltips to Window Objects
You can add tooltips to window fields and
toolbar controls in the tooltip property for an
object, and the tabtooltip property for each tab
in a tab pane or tab strip field. Background
objects cannot have tooltips. Note that you can
use square bracket notation in the text for tooltips.

To enter a tooltip for an object

• Open your window and click on the object

• Open the Property Manager, or bring it to the top using F6/Cmnd-6

• Under the General tab select the tooltip property and enter a short help message

When the user positions the mouse over the object in runtime
the help message pops up. For example, you can add tooltips to
pushbuttons.

You can hide and show tooltips for all window objects and
toolbars in OMNIS and your own libraries using the
preferences showwindowtips and showtoolbartips control. These preferences are enabled
by default, but you can change them using the Tools>>Options/Preferences menu item.

176 Chapter 6—Window Classes

Background Objects
All types of window fields, that is, any window objects that potentially can hold data or
receive events, are referred to as foreground objects. Any graphic objects you place on your
window are considered to be background objects. The latter do not hold data, they are
graphical devices for enhancing the appearance of your window.

You can create various types of background objects including text and labels from the
Component Store. To view background objects in the Component Store, click on the
Background Objects button on the Component Store tool bar.

3D Rect
creates a 3d rectangle or square

Label
creates a field label

Line
creates a horizontal, vertical, or diagonal
straight line

Oval
creates an oval or circle

Rectangle
creates a standard rectangle or square

Round Rectangle
creates a standard rectangle or square
with rounded corners

Text
creates a text object

You place background objects on your window in exactly the same way as for fields. For
example, you can click on a component icon in the Component Store and click-and-drag the

Background Objects 177

mouse on your window to create an object of a particular size and shape. If you hold down
the Ctrl/Cmnd key as you draw an object, OMNIS constrains the objects as follows.

– rectangles and rounded rectangles draw as squares

– ovals draw as circles

– lines draw at 0, 45, and 90 degrees only

Note that you can paste a picture or bitmap image into your window as a background object
using the Edit>>Paste or Edit>>Paste from File menu items. The former choice pastes a
picture you have cut or copied to the clipboard; the latter pastes a Windows metafile,
bitmap or a Mac OS PICT file directly onto the window background.

Label and Text Objects
You can place text on a window (or report) using either a
Label or Text object. These object types are represented by the
constants kLabel and kText respectively. They have the same
text properties under the Property Manager, but different
usage: label objects do not support several features that are
available for text objects. The main differences between label
and text objects are as follows:

– Label objects do not wrap, and are therefore suitable for
field labels or short single line text objects. Text objects do support multiple lines

– Label objects do not support the use of square bracket notation, whereas Text objects
evaluate variables or calculations contained in [] placed in the text

– Label objects do not support rich text features within the text, whereas Text objects let
you assign different character formatting (italic, bold, underline, and so on) to
individual characters or words within a single text object

Background Object Properties
When you place a background object on your window the Property Manager opens showing
the properties of the object. For Background Objects the Property Manager shows general,
text, appearance, and data properties. These properties control the overall appearance of the
object. Note that background objects do not have several of the properties of foreground
objects such as dataname, enabled, or visible.

Note that once you have placed an object on your window you cannot change its type. For
example, you cannot change a rectangle into a rounded rectangle. To create an object of
another type you have to create a new one from the Component Store.

Generally, background objects are either graphic objects or text objects. All background
objects have the same properties, but the text properties for graphic objects are irrelevant
and are they are grayed out in the Property Manager. All background objects have a

178 Chapter 6—Window Classes

particular size and position, set up using the left, top, width, and height properties. Also
every background object has an ident or a number that uniquely identifies the object.

For text and labels you can change the font, fontsize, fontstyle, textcolor, and alignment.
You change theses properties on the Text tab of the Property Manager. You enter the actual
text for a text or label in the text property for the object. This property is grayed out for
objects that do not contain text.

You can set the color and pattern of a background object under the Appearance tab in the
Property Manager using the backpattern, forecolor, backcolor, and bordercolor
properties, and you can set its border using linestyle. Furthermore, you can change the
border effect of all background objects by setting the effect property. Objects can be inset,
beveled, chiseled, shadowed, or various combinations of these.

External components
In addition to the built-in components within OMNIS Studio, you can extend the range of
field types available to you by adding external components to the Component Store and
integrating them into your applications. You add external components to a window class
from the Component Store in the same way as the built-in fields and objects described in the
previous sections.

OMNIS supports a number of different types of components.

– ActiveX controls
pre-registered external components, available under Windows only

– Java Beans
applets written in Java, currently available under the 32-bit Windows platforms only

– C++ controls
external components written in C++ that you can compile to run under any operating
system supported in OMNIS

External component libraries are placed in the XCOMP folder under the main OMNIS
folder and viewed in the Component Store. To use external components on a
68K Macintosh you need the Code Fragment Manager.

External components 179

To use an external component, its library must be loaded. A number of components are
automatically loaded the first time you start up a copy of OMNIS Studio, and you can
decide which others you need. All the external components currently loaded are available
under the External Components button in the Component Store toolbar; this button is visible
when you have a window or report design screen on top and at least one component is
currently loaded.

To use external components

• Open your window or report class in design mode

• Open the Component Store, or bring it to the top, by pressing F3/Cmnd-3

• Click on the External Components button in the Component Store toolbar

180 Chapter 6—Window Classes

To place an external component on your window

• Click on the required external component in the Component Store

• Click and drag on your window to create a field

or you can

• Double-click on an external component in the Component Store to create a field
automatically

• Size and reposition the external control field

For example, you can click on the Clock Control and create a clock component on your
window. The Property Manager displays an external component’s General field properties,
as well as its own properties on the Custom tab (or the tab has the component’s name).

Clock Control shown on a window

Property Manager showing properties of the Clock
Component

External components 181

On the General tab, each external component has the componentlib and componentctrl
properties representing the name of the component library and the name of the current
control field. Some controls have an about property which, when clicked in the Property
Manager or called using the notation, shows an About window for the component.

Controls have their own custom properties, methods, events, and constants and you will
need to refer to the vendor documentation for information on how these work. The events
and constants for a control are listed in the Catalog, whereas the methods are listed in the
Property Manager under the Methods tab. For example, the QuickTime Control lists its
methods under the Methods tab in the Catalog.

Showing External Components in the
Component Store
The external components initially visible in the Component Store are preloaded, but you can
show other components that may already be available. You can also load or register other
external components that reside in your system.

All the external components currently available in OMNIS are listed in the system table
called #EXTCOMPLIBS. You can access this system table from the IDE Browser or from
the Component Store.

To show an external component in the Component Store

• Select the Library>>External Components menu option on the IDE Browser menu bar

or

• Open a window or report design screen and make sure it’s the top window

• Select View>>External Components from the Component Store menu bar

or

• Right-click on the Component Store and select External Components from the context
menu

or

• Open the IDE Browser, and show the system tables in your library using the Browser
Options (press F7/Cmnd-7 when the Browser is on top)

• Double-click on the system table #EXTCOMPLIBS

182 Chapter 6—Window Classes

External Components Dialog
The External Components dialog contains a tree list that includes all the external
components currently available on your system. External component libraries that are
currently loaded are shown with a green dot, those not loaded are shown with a red dot. A
library may contain one or more controls within it; normally it would be logical for these
controls to be related in some way. In addition to visual external components, the library
may also contain external objects, which are described in OMNIS Programming.

The dialog lists all the different types of external components and external objects including
ActiveX, JavaBeans, and background component types. If you select a Component library
in the left hand pane, its Component controls and their type, such as whether they can be
placed on a window or report are shown for each control in the right hand pane. The type is
indicates by icon(s). You control the availability or preloaded status of each library by
clicking on one of the radio buttons as follows

– None
the component is not loaded, but when used on a window or report it is loaded

– Starting OMNIS
the component is always preloaded in OMNIS and is available to all OMNIS libraries

External components 183

– Opening ‘the current library’
the component is preloaded in the specified library when it is opened

Note that you have to close and reopen the dialog to refresh the list. Certain components,
such as the Graph and OLE components, are loaded by default. Setting an external
component library to be always loaded in OMNIS will increase the time OMNIS takes to
startup, whereas setting a component to load on opening a library or window will slow
down the opening of the library or window only.

If you are experiencing problems with loading or using an external component, it may be
that there is some non-OMNIS software that you need to install. The Trace log, opened in
the debugger under Options>>Open Trace Log, will show what, if anything, is missing.

Loading or Registering External Components
You can load external components not currently listed in the External Components dialog,
including ActiveX and Java components, using the Browse button.

To use Java Beans you must install the Java Development Kit (JDK) version 1.1 or later.
You should also download the Bean Development Kit (BDK), since this is a prime source
of Java Bean examples. Java Beans can reside anywhere on your system, therefore OMNIS
needs to be aware of where they are. To find the beans on your system, use the Find Beans
button on the Java Beans Configuration dialog.

Note that this process may take some time, since your whole system has to be scanned.

ActiveX controls can reside anywhere on your system, and are registered in the registry, or
under Windows 3.1, in the OMNIS.INI file. You must register an ActiveX control before
you can use it in OMNIS. When you unregister one, it is no longer available in OMNIS.

184 Chapter 6—Window Classes

To load or register an external component

• Open the External Components dialog, as above, and click on the Browse button

• Select the Component type, for example, ActiveX or OMNIS External component

For ActiveX components

• Click on the Register button

• Navigate the open dialog, select the ActiveX component, and click on Open

• You will have to restart OMNIS to view ActiveX components

For OMNIS External components

• In the open dialog go to the XCOMP folder under the main OMNIS folder

• Select the component and click on Open

To unload an external component

• Select the external component in the External Components dialog

• Click on the Unload button

Graphs
The Component Store contains a Graph external component that lets you create many
different types of graph including bar charts, pie charts, and stock market graphs. The
Graph component is described in the separate OMNIS Graphs manual.

External components 185

Background External Components
In addition to the controls already described, OMNIS Studio supports background external
components. These background or graphical components, such as the Wash Control and
Tile Control examples, are shown under the Background Components button in the
Component Store. You can also create and integrate your own background external
components into your applications.

Writing your own External Components
You can write your own C++ external components and add them to your applications as you
would other external components. If you want to do this, you may find it useful to look at
the source of the example external components provided in OMNIS. The source is found on
the OMNIS website which you can access from the OMNIS Help. The example components
vary considerably in complexity, but you should start by looking at the simpler ones, such as
the Generic externals. Full details of how to create your own external components is
documented in the OMNIS Studio External Components manual available on the OMNIS
website (www.omnis-software.com).

If you have created any external components of your own to run under OMNIS Studio
version 1.x, you must recompile them for OMNIS Studio 2.0.

186 Chapter 6—Window Classes

Modifying Windows and Fields
When creating a window in design mode you can
modify it as much and as often as you like: you can
carry on adding fields and background objects, you
can change the style and properties of the window,
you can delete fields and objects, or you can
change the properties of fields at any time.

Once you have placed objects on your window you
can move them, resize them, align them, group
them, copy and paste them, and you can even drag
an object onto another window, or drag objects into
the current window.

While you are modifying your window you can
Right-click on a field or the window background to
open a context menu that lets you modify the object
or group of objects under the mouse. This menu
contains options that apply to the current object, the
selected group of objects, or the current window
class. The options are:

– Group
joins selected objects together so you can
select or move them as a group, and places a
check mark against the option; you can ungroup a selected group by unchecking this
option, but note you cannot ungroup a locked group

– Lock
locks the size and position of an object or group of objects and places a check mark
against the option; you can unlock an object or group by unchecking this option

– Delete
deletes the object or currently selected group of objects

– Align
opens the align submenu that lets you align objects: you can align objects according to
their left, top, right, or bottom edges; you can make objects the same width or height;
you can center objects horizontally or vertically; and you can evenly distribute or space
objects horizontally or vertically

Modifying Windows and Fields 187

To arrange a number of vertically-oriented objects

• Select the objects and Right-click inside one of the objects

• Select the Align>>Center Vertically option

• Open the context menu again and select Align>>Distribute Vertically

Center vertically... Distribute vertically... Gives you...

To arrange a number of horizontally-oriented objects

• Select the objects and Right-click inside one of the objects

• Select the Align>>Center Horizontally option

• Open the context menu again and select Align>>Distribute Horizontally

Center horizontally...

Distribute horizontally...

Gives you...

– Order
opens the order submenu that controls the layering of overlapping fields and objects:
you can send an object to the back or bring it to the front, or you can send an object
back one layer or bring it forward one layer

188 Chapter 6—Window Classes

– Rulers
adds rulers to the current window; the rulers have the units set in the usecms OMNIS
property under Tools>>Options/Preferences (set it to false for inches)

– Show Field Numbers
shows or hides field numbers on the current window: note that background objects do
not have field numbers; see below for details about field ordering

– Field List
opens a list of fields for the current window

The field list displays all the fields and other objects on the current window. You can
expand the node for a container field, such as a tab pane or scroll box, to view its contents.
The field list indicates the currently selected field with a check mark; you can select a field
in your window by checking a field in the list.

– Field Methods
opens the field methods for the currently selected field; the option is grayed when you
click on the window background, or an object that cannot contain methods

– Class Methods
opens the class methods for the window

– Superclass
opens the superclass for the currently selected inherited field or object; the option is
grayed if the window does not have a superclass

– Subwindow Class
opens the window class for the currently selected subwindow field; the option is grayed
for all field types except subwindow fields

– Properties
displays the properties for the window or currently selected object

Modifying Windows and Fields 189

– Open Window
toggles between the design window and the open window: note that you can press
Ctrl/Cmnd-T to test a window whenever it is on top; this keypress toggles a window
between design and runtime mode

Moving and Sizing Objects
When creating or modifying your window you can rearrange objects by moving and resizing
them with the mouse or arrow keys. You can click inside an object or Shift-click on a
number of objects to select them as a group.

To duplicate an object under Windows, you hold down the Ctrl key and click and drag
inside the object, or under MacOS you Option-drag the object. Holding the Shift key down
as well constrains the movement to vertical or horizontal, or you can use a design grid in the
window.

You can cut or copy and paste objects on your window using the Edit menu or its equivalent
keys, and you can delete objects altogether by pressing Backspace.

You can also move and size your window at any time. When you are designing a window,
its position and size on the screen reflect its actual position and size when you open it for
data entry (although you can override this using programming). You can drag the title bar of
your window to move it, and you can click and drag the edge or corner of the window
(assuming it has a size box or border) to resize your window.

Using the Grid
To help you arrange the objects on your window you can use a design grid, which is a
property of the window itself.

To set the properties of the window grid

• Open the Property Manager for your window by clicking on the background

• Click on the General tab (you may need to scroll down to see the grid properties)

With these properties you can show the window
design grid (shown as a series of dots), size and
align objects to the grid, and set the fineness of
the grid. You can set horzgrid and vertgrid to
any number from 2 to 200 pixels. With very
fine settings such as 2 and 3 pixels, OMNIS
displays every other grid node, but objects are
still sized and aligned to the current setting.

190 Chapter 6—Window Classes

When you enable the grid by setting the aligntogrid or sizetogrid properties OMNIS will
not reposition and resize existing objects on your window automatically: the grid will size
and align any new objects you create after you enable the grid, but you can resize and re-
align existing objects by hand.

Window and Field Methods
You can create a window class and add fields and other objects to the window from the
Component Store, but to make your window properly function you need to add some
programming behind your window. To do this, you write code that accesses the standard
methods in the window class. You add class methods to the window itself to control the
window behavior and handle events for the window, and you add field methods to each field
or control on your window to control the behavior of the field and handle its events.

You can add up to 501 methods to each field or control on your window, and a further 501
methods to your window class. You enter these methods using the method editor.

When you create a window from the Component Store it contains a $construct() and
$destruct() method by default. You can add code to these methods that control the opening
and closing of the window class. Most window fields from the Component Store have an
$event() method that contains event handling code for that type of object. For example, a
standard entry field has code that detects when the user enters and leaves the field, and a tab
pane field has code that detects which tab has been selected. You can add further event
handling code to the $event() method or add other methods to the same field.

To add a method to a window class

• Open your window class

• Right-click on the window background to open the window context menu

• Select the Class methods option

You can add class methods to your window that

– control the window when it is opened or closed

– respond to user clicks and tabs

– detect when another window is brought to the front

To add a method to a window field

• Open your window class

• Right-click on the field to open a context menu

• Select the Field methods option

Window and Field Methods 191

You can add methods to each field that detect

– when the user enters the field

– when the user leaves the field or presses the tab key

– when the user clicks on a pushbutton or other control

– when the user’s mouse passes over the field

– when the user clicks on a line in a list field

For further details about programming methods and handling events, see the Methods and
Notation and the Events and Messages chapters in the OMNIS Programming manual.

192 Chapter 7—Menu Classes

Chapter 7—Menu Classes
Menus let end users perform standard operations in your application, such as enter data or
print reports. The definition for a standard menu is stored in a menu class. You can create
your own custom menus and install them on the main application menu bar using the Install
menu command, on the menu bar of a window, or as a popup or context menu on a window.
You can create hierarchical menus that drop down off another menu, and you can
incorporate standard OMNIS menus such as File and Edit into your application.

This chapter describes the different types of menu available in OMNIS and how you create
them using a menu wizard or from scratch. It also describes menu properties and how you
modify them to change the behavior of your menus.

Menu Types
The types of menu classes you can create are:

� Standard dropdown menus
you can install any menu
class on the main menu bar;
you can add shortcut keys
and control access to menus
using user levels, you can
check and uncheck individual
menu lines and
enable/disable them.

� Hierarchical menus
you create a hierarchical
menu as a separate menu
class and add it to another
menu line; when the user
selects the line a menu drops
down

Menu Types 193

� Popup menus
this type of window field
pops up a standard menu
when you click on it

�� Window menus
you can install any standard
or custom menu on the menu
bar in a window

� Context menus
you can define a context
menu that pops up when you
Right-click on a field or
window

You can add up to 500 lines or menu items to a menu class, but in practice you will only
need the first twenty-or-so for most types of menus. You can add a keyboard alternative, or
shortcut key, to each menu line when you create the class.

Methods do the real work behind the menu. You can add methods to the class itself and
each menu line. The class methods can initialize the menu when it is installed, and the line
methods could do anything from open a window, print a report or series of labels, or insert a

194 Chapter 7—Menu Classes

row into your database. When you select a line in the installed menu, OMNIS runs the
method behind that menu line.

Creating Menus using Wizards
This section describes how you can create a menu class automatically, using a wizard from
the Component Store. A menu you create in this way lets you open window classes and
print reports. You can also add hierarchical menus to your new menu using the standard
wizard. To make full use of the standard menu wizard you should create your window and
report classes first. The following wizards are available

Menu Wizard
creates a menu containing menu lines to open window classes and print
report classes; can also contain hierarchical menus

File Menu Template
creates a menu that you can use to replace the standard File menu; you can
edit this menu class and add your own menu lines

To create a menu class using a wizard

• Open your library in the Browser

• If you like, you can display the classes in your library using the View>>Down One
Level menu option on the Browser menu bar

• Open the Component Store or bring it to the top using F3/Cmnd-3

• Click on the Menu Classes button in the Component Store toolbar to show all the menu
templates and wizards

• Drag the Menu Wizard from the Component Store onto your library in the Browser

Creating Menus using Wizards 195

• Name the new menu class and press Return, or click in the Browser

The Menu Wizard displays all the available window, report, and menu classes in your
library and lets you select which classes you want to include on your menu. You can expand
each group and drag individual classes or separators onto the menu pane, or you can drag a
whole group of classes onto the menu pane.

If you click Cancel at any time, the wizard is halted and the new class is removed from your
library. To continue

• Drag individual window, report, and menu classes onto the menu pane, or drag a group
name onto the menu pane to include all classes in that group

• Drag separators onto the menu pane and drop them in between the classes

• If necessary, you can drag classes or separators in the menu pane on the right to
rearrange your menu

• Edit the menu title; this is the name that will install on the main menu bar

196 Chapter 7—Menu Classes

• Finally, click on Create

When you finish in the Menu Wizard the new menu class is opened ready for you to modify
or install. To modify your menu you need to edit its properties in the Property Manager, but
you can edit the text for a menu line by clicking on the line and typing some new text. You
can also add new menu lines, and you can add methods to the menu class or the lines in the
menu. These are all described in this and subsequent chapters.

To install your menu

• When the menu design screen is on top you can Right-click on the menu class, and
select Install Menu from the context menu

or from the Browser you can

• Right-click on the new menu class, and select Install Menu from the context menu

Creating a New Menu 197

Default Menu Template or Wizard
The default menu template or wizard is the one used when you create a new class using the
Class>>New>>Menu option in the Browser, and it’s also the class shown under the Default
Classes button in the Component Store toolbar. The default menu template appears under
the Menu Classes button in the Component Store, shown by a check mark on the template
icon. However, you can change the default template for menu classes.

To change the default menu template or wizard

• In the Component Store toolbar, click on the Menu Classes button

• Right-click on the class or wizard you want to make the default

• Select the Make Default option from the context menu

For example, you can make the Menu Wizard the default template and from thereon, when
you use Class>>New>>Menu in the Browser, the Menu Wizard will be called by default.
When you click on the Default Classes button in the Component Store, the template or
wizard you set as the default is shown. The remainder of this chapter assumes that the class
called “New Menu” is the default class.

Creating a New Menu
This section describes how you can create a menu class from the Component Store or from
the Browser using the New Menu template. A menu you create in this way contains no
menu lines or methods, but it lets you create your menu entirely from scratch. To design a
menu you create a menu class, specify the text you want to appear in each menu line, and
add the methods to each line in your menu using the method editor.

To create a new menu class

• Open your library in the Browser

• Display the classes in your library using the View>>Down One Level menu option on
the Browser menu bar

• Drag the template called “New Menu” from the Component Store onto the Browser

or

• From the Browser menu bar select Class>>New>>Menu

• Name the new menu

• Double-click on the new menu class to modify it

198 Chapter 7—Menu Classes

The new menu does not contain any menu lines or methods. The cursor is at the top-left of
the menu editor. You create the menu title, menu lines, and separators using the keyboard.

To add a menu title and menu lines

• Type the menu title; this is added at the top of the menu editor

• Press Return once to go to the first line in your menu

• Type the text you want to appear in the first menu line

• Press Return once to go to the next line in your menu

• Continue adding menu lines using Return to go to the next line

To create a menu line separator

• Press the Return key twice

You can use drag and drop to re-order the lines in a menu. You can also drag a menu line
from one menu class to another to copy the line. You can add and delete lines by Right-
clicking on your menu and selecting Add or Delete Line from the context menu.

Menu Line and Class Methods 199

You can also use this context menu to install your menu on the menu bar, add methods to
the class, and examine the properties of the menu. The Install Menu option adds your menu
to the main menu bar. You can click on your menu and see how it looks, but until you add
methods behind each line in your menu class it will not do anything.

Menu Line and Class Methods
You can create a menu class and add each menu line, but to make your menu properly
function you need to add some programming behind your menu. To do this, you write code
that accesses the standard methods in the menu class. You can add class methods to the
menu itself to control the menu when it is installed. And you can add line methods to each
line in your menu: a line method is executed when the corresponding menu line is selected
in the installed menu.

You can add up to 501 methods to each line in your menu, and a further 501 methods to
your menu class. You enter the methods for lines and classes using the method editor. You
can open the methods for a menu line by double-clicking in the margin to the left of the
menu text; double-clicking on the menu text lets you edit the text.

When you create a menu from the Component Store it contains a $construct() and
$destruct() method by default. You can add code to these methods that control the installing
and closing of the menu. In addition, each menu line has an $event() method in which you
add the code you want to run when the menu line is selected. For example you could use the
Open window instance command in a line method to open a window, or you could use the

200 Chapter 7—Menu Classes

Print report command to print a report to the current destination. A menu line method can
do literally anything you want it to do using an OMNIS command or series of commands.

To add a method to a menu line

• Open your menu class

• Right-click on the appropriate menu line to open a context menu

• Select the Line methods option

To add a method to a menu class

• Open your menu class

• Right-click on the background of the menu editor to open the menu context menu

• Select the Class methods option

Menus and Code Classes
You can put general-purpose methods that you are likely to need throughout your
application into a code class, and call these methods from the line methods in your menu
class using the Do code method command. You can call the same methods from the toolbars
in your library too, which saves duplicating methods. For further details about writing
methods, see the Methods and Notation chapter in the OMNIS Programming manual.

Menu Properties
This section describes menu class and menu line properties, and how you modify these to
change the appearance and behavior of your menu. Many of the standard functions of a
menu, such as enabling or disabling a menu line, adding shortcut keys, or setting passwords
for each menu option, are properties of each menu line.

To view the properties of a menu class

• Open the menu class in design mode

• Click on its title

or

• In the Browser, Right-click on the menu class and select the Properties menu item

Menu Properties 201

The general properties of a menu class are as follows: title is the name that appears on the
menu bar, enabled controls whether the whole menu is accessible or not, and users controls
which users are allowed to access the menu (see below for details about menu access). For
details about the other class properties such as name and classtype, and setting
designtaskname, see the Libraries and Classes chapter; help for menus is described later in
this chapter.

To view the properties of a menu line

• Open the menu class in design mode

• Click on the menu line

or

• Right-click on the menu line and select the Properties menu item

202 Chapter 7—Menu Classes

The Property Manager opens showing the properties for the selected menu line. You can set
the following properties for each menu line or separator.

name the object name of the menu line, that is, the internal name
that uniquely identifies this menu line

text the text for the menu line; you can enter this text directly in
the menu editor or here in the Property Manager

enabled whether the menu line is enabled or not: if you set this to
false, the line will be grayed out in the installed menu

checked whether the menu line is checked or not: normally you
check and uncheck a line in response to a user action using
a method

users controls which users have access to the menu line; see
below for details about access

macshortcutkey the shortcut key character for the menu line under MacOS

winshortcutkey the shortcut key character for the menu line under
Windows

cascade name of the menu class attached to this menu line as a
hierarchical menu

Menu Icons 203

helptext the help message displayed in the status help bar

helpfile help file for context-sensitive help

iconid id of the icon for the menu line; if empty the menu line has
no icon

In addition to the general properties, under MacOS you can set the fontstyle property under
the Text tab to make a menu line bold, italic, or underline and you also have the Outline and
Shadow font styles.

Menu Icons
The OMNIS IDE menus and your own custom menus
can have icons for each menu line. Menu icons appear
under Windows 95 and NT only, provided the $root
preference $style97 is set to kTrue.

Menu lines in your own custom menus have the
$iconid property in which you can specify the id of a
16x16 icon for the menu line; larger icons are not
available for menu lines. If the property is empty (the
default) the menu line does not have an icon.

If a menu line can be checked, for example, it is an
option that can be on or off, OMNIS uses the checked
and unchecked state of the icon provided the icon has
multiple states in the icon data file.

204 Chapter 7—Menu Classes

Shortcut Keys
You can specify a shortcut key or keyboard alternative for each line in your menu. When
the end-user presses the specified key combination the menu line is activated. Under
Windows you can add Ctrl and Alt key combinations to menu lines. Under MacOS you can
add Cmnd and Option key alternatives. You can further modify keyboard alternatives with
the Shift key under any OS. You enter these keys in the Property Manager for the menu line,
or by pressing the required key combination when the appropriate menu line is selected in
the menu editor.

The menu editor context menu has the option Accept All Key Strokes. When checked (the
default) the menu editor accepts all keystrokes, including shortcut keys, and enters them
into the current menu line. When this option is unchecked you cannot enter menu lines
directly from the keyboard, in this case you have to enter the text and shortcut key for each
menu line in the Property Manager.

To add a shortcut key in the menu editor

• Open your menu class in design mode

• Select the menu line and press the key combination you want to assign to it

For example, select the menu line and press Ctrl or Cmnd
and the number key “5” to add the Ctrl/Cmnd-5 shortcut key,
or press Ctrl or Cmnd and the letter “A” to add the
Ctrl/Cmnd-A shortcut key to the current menu line.
Whichever platform you are using, the appropriate shortcut
key is entered for all platforms automatically.

Certain shortcut keys cannot be inserted in this way, because
they have functionality that is detected and intercepted by
OMNIS or the operating system. They are Ctrl/Cmnd-T and
Ctrl/Cmnd-S on all platforms, plus Cmnd-Q and Cmnd-W
under MacOS.

To add a shortcut key in the Property Manager

• Right-click on the menu line and select the Properties option

• Click on the droplist in the winshortcutkey property

• In the dialog that pops up, press the shortcut key combination you want to assign to the
menu line and close the dialog

• Repeat for the macshortcutkey property, if required

Shortcut Keys 205

The shortcut key properties should contain the appropriate control keys and letter key.

You should avoid using standard key combinations that appear in OMNIS or your operating
system. MacOS function keys on extended keyboards activate the menu option with the
corresponding Cmnd-number combination. Thus, F1 is the same as Cmnd-1. You cannot
use the Shift-Cmnd-n options, where n is a digit from 0-9, because the MacOS uses these
options.

Furthermore you should make sure that no two menu items in a menu have the same
shortcut key and that no two menus installed at the same time have the same shortcut key.
Duplicates will be unpredictable depending on which menus are installed at the time or the
order in which they appear on the main menu bar.

Alt Shortcuts Keys under Windows
Under Windows you can add Alt key equivalents to menu lines and to the menu title itself.
You specify the key by including an ampersand ("&") before the character in the menu line
or menu title. For example, if you want your users to open a menu called Travel with the
Alt-T key combination, add an ampersand before the T in the menu title. In this case, the
text for the menu title should be “&Travel”. Likewise you can add an Alt shortcut key to
any letter in a menu line. For example, to add the Alt-S shortcut key to a “Customers” menu
line, the text for the menu line should be “Cu&stomers”.

You can include the ampersand in the appropriate menu line or title when you enter the item
in the menu class editor, or you can add it to the text or title property for the item in the
Property Manager. Usually you add shortcut keys as an afterthought, in which case it is
easier to do it in the Property Manager. Note you cannot select the menu title or line and
press the required Alt-key combination to assign this type of shortcut key: you have to enter
it directly into the menu editor when you enter the line or using the Property Manager.

To add a shortcut key to a menu title using the Property Manager

• Right-click on the menu title and select the Properties option

• In the Property Manager select the title property

• Add the “&” character before the letter you want to activate

206 Chapter 7—Menu Classes

To add a shortcut key to a menu line using the Property Manager

• Right-click on the menu line and select the Properties option

• In the Property Manager select the text property for the menu line

• Add the “&” character before the letter you want to activate

or

• Simply click in the appropriate line in your menu and add the “&” character

The following screen shots show Alt key shortcuts for a menu title and menu line and the
resulting installed menu.

This menu class... gives you this installed menu...

If you want to use the “&” character as a part of a menu title or menu line, you must insert
the ampersand twice. For example, the menu name "&Clients && Calls" would produce the
menu title "Clients & Calls" with the shortcut key Alt-C.

You should avoid certain Alt key combinations that are used in standard menus in OMNIS
or your operating system, such as Alt-F, which opens the File menu.

Hierarchical menus 207

Hierarchical menus
A hierarchical menu is a menu that drops down from another menu line when you select the
option. You can create a hierarchical menu using any previously defined menu class. For
example, you can create a menu that includes a number of related options, and add its class
name to the cascade property for the menu line in your main menu.

To add a hierarchical menu to a menu line

• Create a separate menu class for your hierarchical menu in the menu class editor,
described earlier in this chapter

• Open your main menu, that is, the one you want to add the hierarchical menu to

• Select the line where you want to add your hierarchical menu, and click on the cascade
property in the Property Manager

• Enter the name of your hierarchical menu class

For example, you could create a menu class called mCustomers and add to it various
options that relate to customers.

Then enter its class name in the cascade menu line property in your main menu.

When you add a hierarchical menu to a menu line, OMNIS places an arrow against the
menu line in the menu editor. This also appears in the installed menu indicating there is a
hierarchical menu attached to this menu line. When you select the option in the installed
menu the hierarchical menu drops down.

208 Chapter 7—Menu Classes

You can cascade menus up to five levels deep under MacOS, and up to eight levels under
all Windows platforms. You should avoid cascading a menu off itself, or creating a chain of
menus that cascade off each other recursively.

You can create multiple instances of a cascading menu using the menuname/* notation in
the $cascading property for the menu line. Otherwise if you specify a simple menuname for
the $cascading property and create multiple instances of the parent menu, you get only one
instance of the cascading menu.

Window Menus
A window menu is a menu installed on the menu bar of a window. A window menu bar is a
property of the window class itself. To show the menu bar for a window you must enable
the hasmenus property. Having enabled the menu bar for a window, you can drag menus
from the Browser and drop them onto a window menu bar.

Note that many of the OMNIS commands and methods that apply to standard menus, such
as Install menu, do not apply to window menus.

To enable a window menu bar

• Open the window in design mode

• Click on the background of the window to show its properties, or press F6/Cmnd-6 to
bring the Property Manager to the top

• Under the General tab enable the hasmenus property

• Under the Appearance tab set the menuedge property

Window Menus 209

When you enable the window menu bar all the objects on your window including fields and
background objects will move down. You can add any type of menu to a window menu bar,
including your own custom menus or the standard OMNIS menus.

To add your own menu to a window menu bar

• Enable the menu bar for your window, as above

• Locate the Browser containing the classes in your library

• Drag your menu class from the Browser onto the window menu bar

• Release the mouse where you want to place your menu

Your menu is added to the window menu bar, but is grayed out in design mode. To try out
your window menu, open the window and click on the menu.

210 Chapter 7—Menu Classes

To add an OMNIS menu to a window menu bar

• Enable the menu bar for your window, as above

• Right-click on the window menu bar and select the menu you require

To remove a menu from a window menu bar

• In design mode, drag it out of the window menu bar and release the mouse

Popup Menus
A popup menu is a type of window field that opens a menu when you click on the field. You
can create a popup menu using any previously defined menu class and you can add any of
the standard OMNIS menus such as File and Edit to your window as popup menus. When
you create a popup menu field you enter the name of the menu class in the field’s
menuname property.

You can use the constant kDefaultBorder for the $effect property to ensure the menu has the
default border style for the current operating system.

All its other properties are the same as any normal window field. You set up the properties
of the menu itself in the menu class, as described for standard menus.

To create a popup menu field

• Open your window in design mode

• Drag a Popup menu field onto your window from the Component Store

• Locate the Property Manager, or press F6/Cmnd-6 to bring it to the top

• Select the menuname property for the field

• Enter the name of your menu class, or select it from the dropdown list

Popup Menus 211

When you open your window and click on the popup menu field, your menu drops down
under the window field.

212 Chapter 7—Menu Classes

Context Menus
A context menu is a menu that pops up when you Right-click on the background of an open
window or a field; under MacOS you Ctrl-click to popup a context menu. Context menus
appear throughout the OMNIS design environment to help you access methods and so on,
but you can add context menus to any of the windows in your application. To create a
context menu you enter the name of the menu class in the contextmenu property for the
window or field. You set up the contents and properties of the context menu itself in the
specified menu class, as described earlier in this chapter.

To create a context menu for a window

• Create the menu class for your context menu

For example you could create your own View menu for a particular window: such a menu
could show and hide the window menu bar, tool bar, status bar, and so on.

• Open your window in design mode and click on its background to open the Property
Manager

• Select the contextmenu property and enter the name of your menu class or select its
name from the droplist

• Open your window and Right-click on the window background to try out the context
menu

When a context menu pops up an instance of the menu is created and its $construct()
method is called. Therefore you should be careful what code you put in this method.

Passwords and Menu Access 213

Lists, Headed lists, and Icon arrays can have a second context menu. This is stored in the
$contextmenu property, in the form Menu1[,Menu2]. If specified, Menu2 applies to clicks
in the white space in the list, whereas Menu1 is opened in response to clicks on list lines or
icons. If the second menu is not specified, Menu1 is opened for all clicks.

The evOpenContextMenu event has an additional parameter, pClickedField, which contains
an item reference to the field or window instance that has been right-clicked. Menu
instances have an additional property called $contextobj. For context menus, this is an item
reference to the field or window instance that has been right-clicked to bring up the menu.

Passwords and Menu Access
You can restrict access to certain parts of your library including menu items by setting up a
system of passwords. You can define varying degrees of access for up to eight users or
passwords, plus a master password. Several different users can use the same password: you
are not limited to literally eight users. You can use the passwords set up in your library to
control access to the menus in your library. For a description of setting up passwords see the
Library Tools chapter.

Access to menus or menu lines is set in the users property for the menu item and utilizes the
user numbers and passwords set up in your library. The default is to allow access to all the
menu items in your library for all users or passwords, that is, passwords 1 to 8. The master
password has access to all menus at all times. The users property contains the string
“12345678”. To restrict access to a menu or menu line, you delete the user number from the
users property. For example, to restrict access for user 4, delete the number 4, which leaves
the string “1235678”. To allow access to a menu item, you include the user number in the
users property for the menu or menu line. For example, to allow access for user 4 only,
delete the default string and enter the number 4 only.

To set access for a menu

• Open your menu in design mode, or locate it the Browser

• Right-click on your menu and select the Properties option

• In the users property, enter the user number or numbers you want to allow access for

For example, to allow access to this menu for users 2, 4, and 7, enter the numbers 2, 4, and
7. In effect, this disables access to your menu for users 1, 3, 5, 6, and 8.

214 Chapter 7—Menu Classes

To set access for a menu line

• Open your menu in design mode, and select the appropriate menu line

• Press F6/Cmnd-6 to open the Property Manager, or Right-click on the menu line and
select the Properties option

• In the users property, enter the user number or numbers you want to allow access for

For example, to allow access to this menu line for users 1, 4, and 6, enter the numbers 1, 4,
and 6. In effect, this disables access to this particular menu line for users 2, 3, 5, 7, and 8.

When the user opens your library using a password that denies access to a particular menu
line, the line is grayed out.

If you restrict access to a line containing a hierarchical menu, access is restricted to the
hierarchical menu too. If you restrict access to a menu title, the whole menu is grayed out
and the user cannot access the menu.

Note that if you restrict access to one particular user, you do not restrict access to any other
users, that is, password access is not hierarchical. For example if you deny access for user 5
you do not restrict access for users 6, 7 and 8 automatically.

The master user is the only user that can change passwords, that is, you have to use the
master password (if there is one) when you enter your library to change the passwords in
that library. Passwords are not assigned in new libraries, therefore you are the master user
by default.

Status Bar Help for Menus 215

Status Bar Help for Menus
You can add short help messages to menus and menu items that display on the window
status bar or the main OMNIS help bar. You enter the message in the helptext property for
the menu title or menu line. The hasstatusbar window property enables the status bar for a
window class, and the helpbaron OMNIS preference enables the main OMNIS help bar.
You can change the font and point size for the main OMNIS help bar with the helpfont
property. Under MacOS you can display the menu help text in Help balloons by enabling
the balloonson property. Note that you can set the OMNIS preferences under the
Tools>>Options/Preferences menu item.

To enter a menu help message

• Open your menu and click on a menu line or the title

• Open the Property Manager, or bring it to the top, using F6/Cmnd-6

• Under the General tab select the helptext property and enter a short help message

When you install your menu and position the mouse over the menu option, the help message
is displayed in the window status bar for window menus, and in the main OMNIS help bar
for menus installed on the main menu bar.

216 Chapter 8—Toolbar Classes

Chapter 8—Toolbar
Classes

You can create your own toolbars that contain buttons and other controls that lets the user
access common options and functions in your application. In OMNIS you define a toolbar
as a toolbar class. This chapter describes how you create toolbars in your own library. The
standard OMNIS toolbars are described in the OMNIS Tools chapter.

You can install your own custom toolbars in the top, left, right, or bottom docking area of
the main OMNIS application window using the Install toolbar command. Toolbars can also
be floating. You can add toolbars to any window class too, but you must create your toolbar
class first before you can add it to a window. The toolbar commands, such as Install
toolbar, refer to toolbars in the main docking areas, not window toolbars.

Toolbar classes can contain methods and variables. As with menus, the methods you place
behind each control do the real work in a toolbar. You can add methods to the toolbar class
itself and to each control. When you click on a control in your toolbar, OMNIS runs the
$event() method behind the tool.

A method behind a control could do anything from open a window, print a report or series
of labels, or insert a row into your database. In line with usual GUI design practice, you can
put the methods to do these things into a code class and access them from your toolbar, and
access the same methods from a menu.

The Component Store contains a New Toolbar class that is the default toolbar class. This
template class does not contain any controls or methods, but lets you create your toolbar
from scratch. The Component Store also contains a number of other template toolbars,
under the Toolbar Classes button, that you can use as a basis for your own toolbars. They
include a File, Standard, and View template which you can use in a window toolbar: the
methods behind these toolbars call code in the current window.

Creating a New Toolbar 217

Creating a New Toolbar
To add a toolbar to your library, first you need to create a toolbar class and add the various
buttons and controls you want on your toolbar. Next you add the methods to each tool using
the method editor. You can create a toolbar class from the Component Store or from the
Browser using Class>>New>>Toolbar.

To create a new toolbar

• Open your library in the Browser

• Display the classes in your library using the View>>Down One Level menu option on
the Browser menu bar

• Drag the template called “New Toolbar” from the Component Store onto the Browser

or

• From the Browser menu bar select Class>>New>>Toolbar

• Name the toolbar class

• Double-click on the toolbar class to modify it

218 Chapter 8—Toolbar Classes

Toolbar Controls
You can add many different types of controls to your toolbar, including buttons, lists,
menus, check boxes, radio buttons, and various style and color pickers. When you open a
toolbar class in design mode the Component Store displays the different types of tools.

Control Description

Separator
adds a space between toolbar controls

Pushbutton
a push button control that runs a method when you click
on it

Dropdown list
list control that lets you select a value from a dropdown
list

Combo box
list control that lets you enter a value or select one from a
list

Popup list
list control that lets you select a value from a popup list

Popup menu
menu control that lets you select an option from a popup
menu

Radio button
toggle control that lets you select one of several mutually
exclusive choices

Check box
toggle control representing on/off , yes/no, 1/0 status

Toolbar Controls 219

Control Description

Font list
list that lets the user pick a font for an object

Font size list
list that lets the user select the font size for an object

Line style picker
palette that lets the user pick a line style for an object

Color picker
palette that lets the user pick a color for an object

Pattern picker
palette that lets the user pick a pattern for an object

To add a toolbar control

• Open the Component Store, or bring it to the top using F3/Cmnd-3

• Drag a control from the Component Store and drop it onto your toolbar

or

• Double-click on a control in the Component Store to add it to the toolbar; this adds a
control to the right of the selected control or at the beginning of your toolbar if no
control is selected

When you drop a control onto your toolbar class it snaps into position. You can add as
many buttons and controls as you like, and you can use the separator control to put space
between groups of tools. You can drop a control anywhere within the active area or between
existing controls. Once you’ve placed controls in a particular order, you can drag them to
the left or to the right to reposition them on your toolbar.

Dragging a control from one toolbar class to another copies the control to the destination
class.

The following screen shot shows a toolbar with some of the different types of controls,
including button, droplist, radio buttons, check box, color and pattern pickers.

220 Chapter 8—Toolbar Classes

You can click on check boxes and radio buttons to turn them on or off. If you place several
radio buttons together, without separators, they behave as a group. That is, when you select
one radio button in a group the currently selected one will be deselected. Popup lists and
menus look like buttons, but when you click on them in the installed toolbar a list or menu
drops down.

To remove a toolbar control

• Open your toolbar class in design mode

• Click on the control and press the Delete key, or you can press Backspace to delete the
control to the left of the currently selected one

At this stage some of your tools may not have icons or text labels, and when you install the
toolbar the controls will not do anything when you click on them. All of these features you
add in the properties and methods for each control.

Toolbar Properties
The properties of a toolbar class set the default initial docking area for the installed toolbar,
whether or not it can be dragged out of a docking area, and whether or not you can resize
the toolbar when it is floating. In addition, you can set the user access for the toolbar in its
class properties.

To view the properties of a toolbar

• Click on the toolbar class in the Browser, and press F6/Cmnd-6 to open or bring the
Property Manager to the top

or

• Open your toolbar class in design mode

• Click on the background of the toolbar (make sure a control is not selected)

• Press F6/Cmnd-6 to open the Property Manager

Toolbar Properties 221

title this is the name displayed in the title of the toolbar when it is
floating (if it is allowed to float)

allowdrag if true lets you drag the installed toolbar out of the docking area:
when undocked the toolbar is said to be floating

allowresize if true lets you resize the toolbar when it is floating

initialdockingarea the docking area into which the toolbar is installed initially: you can
install a toolbar into the top, bottom, left, or right docking area, or
you can make the toolbar floating

enabled if true the toolbar is enabled: if you disable a toolbar it is grayed out
and the controls do nothing

users determines which users have access to the toolbar; see the
Library Tools chapter for details about passwords and access

helpfile the name and partial path of the help file for the toolbar

222 Chapter 8—Toolbar Classes

Tool Properties
You set the appearance and behavior of each tool or control on your toolbar in the Property
Manager. Note that you cannot change the objtype of an existing toolbar control.

To view the properties of a toolbar control

• Open your toolbar class in design mode, and click on the control

or

• Right-click on the control and select the Properties option to open the Property
Manager

name the object name of the control: this can be anything you like
but should be unique within the toolbar class

text the text displayed with the control

objtype the control type: note you cannot change the type of an
existing control

tooltip the tooltip text for the control

helpfile help file name for context-sensitive help for the control

checked if true the toggle control is initially checked, for check boxes
and radio buttons only

enabled if true the control is enabled: if you disable a control it is
grayed out and does nothing when selected

width the width of the control in pixels; for list type controls only

users determines which users have access to the control; see the
Library tools chapter for details about passwords and access

Note that control separators have only the name and objtype properties.

Tool Properties 223

Combo Box, Droplist, and Popup List Properties
Combo boxes, droplists, and popup lists have all the general properties of a toolbar control
in addition to special properties including dataname. You can also specify the width of the
various list type controls in pixels.

For droplists you specify the name of your list variable in the dataname property and you
need to supply a calculation to format the list lines for display. Alternatively, you can enter
a number of defaultlines for the droplist.

For combo boxes you specify the listname and calculation for the list part of the control,
and dataname for the entry field part of the control. You can enter a number of
defaultlines that will always popup in your combo box.

For popup lists you must specify the name of your list variable in the dataname property
and you need to supply a calculation to format the list lines for display. Note you cannot
enter default lines for a popup list.

Popup Menu Properties
For popup menu controls you must specify the name of the menu class to appear in your
toolbar in the menuname property.

Font List Properties
For the Font Style and Font Size controls you specify the listname and calculation for the
list part of the control, and the dataname for the entry part. A range of fonts and sizes
appear in the controls by default, but you can enter your own fonts and sizes in a list or in
the defaultlines property. At runtime, the font style or size selected by the user is returned

224 Chapter 8—Toolbar Classes

as the contents of the entry field part of the control. These pickers can be used with the
Modify Report Field described in the Window Programming chapter in the OMNIS
Programming manual.

Line, Color, and Pattern Pickers
The Line, Color, and Pattern pickers have all the general properties of a toolbar control as
well as the text and iconid properties. The standard line, color, and pattern palettes appear
in these controls by default. At runtime, the value selected by the user is returned as the
contents of the control. These can be used with the Modify Report Field described in the
Window Programming chapter in the OMNIS Programming manual.

Toolbar Icons
You can add an icon to most types of controls, all except the list and combo types. You can
specify an icon for a control in its iconid property. Icons for tool controls are located in the
OMNISPIC icon data file, but you can add your own icons to the USERPIC icon data file
and use them in your toolbars. See the Library Tools chapter for details about creating your
own icons.

Controls that you can check or uncheck, such as radio buttons and check boxes, display
different icons for the different checked and unchecked states. All possible states for these
controls are stored in the OMNISPIC icon data file.

To add an icon to a toolbar button

• Open your toolbar class in design mode

• Click on the button to view the Property Manager

• Click on the Appearance tab in the Property Manager

• Click on the right-hand droplist in the iconid property

Tool Properties 225

When you click on the id droplist for the iconid property, the Select an icon dialog opens in
which you can select an icon for the control. You can select a different group of icons using
the dropdown list of the icon selector toolbar.

You should use 16x16 icons for toolbar buttons, and you can use 32x32 icons for buttons
that display text. 48x48 icons do not display for toolbar buttons.

• Select the icon you want and click the Select button, or double-click on the icon

Tooltips
You can add tooltips to individual toolbar controls in the tooltip property for the control.
To hide and show tooltips for the toolbars in OMNIS and your libraries you can set the
showtoolbartips OMNIS Preference, available under the Tools>>Options/Preferences
menu item.

To enter a tooltip for a control

• Open your toolbar class in design mode, and click on the control to open the Property
Manager

or

• Right-click on the control and select the Properties option

• Under the General tab of the Property Manager select the tooltip property and enter a
short help message for the control

226 Chapter 8—Toolbar Classes

Tool and Class Methods
You can create a toolbar class and add many different types on control, but to make your
toolbar properly function you need to add some programming “behind” each control on
your toolbar. You can add Class methods to the toolbar itself to control the toolbar when it
is opened, and you can add Tool methods to the controls in your toolbar: a tool method is
executed when the corresponding tool or control is clicked on in the installed toolbar.

You can add up to 501 methods to each tool or control in your toolbar, and a further 501
methods to your toolbar class. You enter the methods for tools and toolbar classes using the
method editor.

When you create a toolbar from the Component Store it contains a $construct() and
$destruct() method by default. You can add code to these methods that control the installing
and closing of the toolbar. In addition, all controls except separators have a $event() method
in which you add the code you want to run when the tool or control is clicked on. For
example, you could use the Open window instance command in a tool method to open a
window, or you could use the Print report command to print a report to the current
destination. A tool method can do literally anything you want it to do using the OMNIS
commands or the notation.

To add a tool method

• Open your toolbar class

• Right-click on the appropriate tool to open a context menu

• Select the Tool Methods option

Tool and Class Methods 227

To add a method to a toolbar class

• Open your toolbar class

• Right-click on the background of the toolbar editor to open the toolbar context menu

• Select the Class Methods option

Toolbars and Code Classes
You can put general-purpose methods that you are likely to need throughout your
application into a code class, and call these methods from the tool methods in your toolbar
class using the Do code method command. You can call the same methods from the menus
in your library too, which saves duplicating methods. For further details about writing
methods, see the Methods and Notation chapter in the OMNIS Programming manual.

228 Chapter 8—Toolbar Classes

Installing Toolbars
You can install a toolbar class at any time from the toolbar editor itself; this is useful if you
want to see how the toolbar looks while you’re designing it. However, in your finished
application you can use the Install toolbar command or the notation to install a toolbar. You
can also add any toolbar class to the docking area of a window using the toolbarpos
property.

To install a toolbar from the toolbar editor

• Open your toolbar class in design mode

• Right-click on the background of your toolbar

• Select the Install toolbar option from the context menu

The initialdockingarea property of a toolbar class determines which docking area the
toolbar is installed into. Toolbars install into the top docking area of the main OMNIS
application window by default.

If you have enabled the allowdrag property for toolbar class you can drag the installed
toolbar out of the docking area; the toolbar is now floating. If you have enabled the
allowresize property in the toolbar class you can resize the floating toolbar.

You can Right-click on a docking area and select the Show Text option from the context
menu to show the text for each toolbar control.

Docking Areas
You can install a toolbar into the top, bottom, left, or right docking area in the main OMNIS
application window. Note that most list-type controls, such as the Dropdown list and
Combo box types, are not displayed in a toolbar if it is installed into the left or right docking
area. They display as expected when the toolbar is at the top or bottom, or is floating.

You can right-click on a docking area to open its context menu which lets you show and
hide the text labels for any installed toolbars. You can show text for the IDE toolbars as
well as your own custom menus.

You can view and change the properties of the main docking areas using the Notation
Inspector and the Property Manager.

Docking Areas 229

To view the docking areas in the Notation Inspector

• Press F4/Cmnd-4 to open the Notation Inspector

• In the Notation Inspector, expand $root and the $prefs group

• Expand the $dockingareas group

The $dockingareas group contains the main docking areas in the OMNIS application
window. Each docking area has a group called $dockedtoolbars containing all the currently
installed toolbars.

To change the properties of a docking area

• In the Notation Inspector, click on a docking area: for example, click on
kDockingAreaTop to examine or change the properties of the top docking area

• Press F6/Cmnd-6 to open the Property Manager, or bring it to the top

Each docking area has the $visible, $allowdrop, and $showtext properties. The latter
displays the text labels for controls stored in the toolbar class.

230 Chapter 9—Report Classes

Chapter 9—Report
Classes

You can create many different types of report using a template or wizard, each with very
different layouts and data handling capabilities. With reports you can print out all or a
subset of your data, and collect up data from different sources and print it on a single report.
Each type of report in your application is defined as a report class. This chapter describes
report classes and their properties.

Reports can contain data fields, pictures, text, and graphics. You can also place graphs on
your reports, or base a report on an OMNIS list. You can print reports to a number of
destinations, including the current printer, the screen, a file, a port, or the clipboard. Modify
report fields and Screen report fields let you view and modify reports in a window class and
are described in the Window Programming chapter in the OMNIS Programming manual.

You use report fields and sections to build all types of report. You can use standard data
fields that can contain data from your server or OMNIS database. You can use picture fields
to display picture data. You place sections, or horizontal dividers, across your report class
that structure and position the data in the printed output. You can create subtotals, totals,
header and footer sections for most types of reports. By setting the appropriate properties in
a report class you can print labels as well. Furthermore you can add methods to a report
class and the fields and section markers on the report.

In addition to report classes in your library file, you can create a special type of report,
called an ad hoc report. You can use ad hoc reports to query data on your server or OMNIS
database. They are stored as separate files on disk, and can be created, opened, and
modified by end users. Ad hoc reports are described at the end of this chapter.

Creating Reports using Wizards 231

Creating Reports using Wizards
This section describes how you can create a report class automatically, using a wizard from
the Component Store. A report you create in this way contains a number of fields that map
directly to table or file class fields in your library, which lets you print data on your server
or OMNIS database. Before you can use report wizards you must create the schema, table,
or file classes necessary for SQL or OMNIS data access; this is described in the Data
Classes chapter. The following wizards are available

SQL Report Wizard
creates a report based on a table class; each separate field on the new
report maps to a schema column, which in turn maps to your server
database

OMNIS Report Wizard
creates a report based on a file class; each separate field on the new report
class maps to a file class field

To create a report class using a wizard

• Open your library in the Browser

• If you like, you can display the classes in your library using the View>>Down One
Level menu option on the Browser menu bar

• Open the Component Store or bring it to the top using F3/Cmnd-3

• Click on the Report Classes button in the Component Store toolbar to show all the
report templates and wizards

232 Chapter 9—Report Classes

• Drag a SQL or OMNIS Report Wizard from the Component Store onto your library in
the Browser

• Name the new report class and press Return, or click in the Browser

The Report Wizard displays all the available schema, query, or file classes in your library
and lets you select which columns or fields you want to include on your report. You can
expand a particular schema, query, or file to include or exclude individual columns or
fields. If you check a class name without expanding it, all the columns or fields from that
class are included on your report. The wizards do not let you include different columns or
fields from different table or file classes, although a query class may contain columns from
more than one schema class.

If you click Cancel at any time, the wizard is halted and the new class is removed from your
library. To continue

• Choose a schema, query, or file class to base the report on, or select individual columns
or fields in a class, and click on Next

Creating Reports using Wizards 233

For SQL reports only, the wizard prompts you to choose a session for the report, or you can
leave the session names unchecked to use the default session.

• Finally, click on Create to create the report

234 Chapter 9—Report Classes

When you finish in the Report Wizard the new report class is opened ready for you to
modify or print. To modify your report you need to edit its properties. You can also add
new report objects from the Component Store, and you can add methods to the report class
or the objects on the report. These are all described in this and subsequent chapters.

To print your report

• Assuming the design report is on top and you are logged on to a server or OMNIS data
file, you can click on the Print, Preview, or Screen Report button on the report design
toolbar

or from the Browser you can

• Right-click on the new report class, and select Print Report from the context menu

Default Report Template or Wizard
The default report template or wizard is the one used when you create a new class using the
Class>>New>>Report menu option in the Browser, and it’s also the class shown under the
Default Classes button in the Component Store toolbar. The default report template appears
under the Report Classes button in the Component Store, shown by a check mark on the
template icon. However, you can change the default template for report classes.

To change the default report template or wizard

• In the Component Store toolbar, click on the Report Classes button

• Right-click on the class or wizard you want to make the default

• Select the Make Default option from the context menu

For example, you can make the SQL Report Wizard the default template and from thereon,
when you use Class>>New>>Report in the Browser, the SQL Report wizard will be called
by default. When you click on the Default Classes button in the Component Store, the
template or wizard you set as the default is shown. The remainder of this chapter assumes
that the class called “New Report” is the default class.

Creating a New Report 235

Creating a New Report
This section describes how you can create a report class from the Component Store or from
the Browser using the New Report template. A report you create in this way contains no
fields, methods, or any other report objects, but it lets you create your report entirely from
scratch.

To create a new report class

• Open your library in the Browser

• Display the classes in your library using the View>>Down One Level menu option on
the Browser menu bar

• Drag the template called “New Report” from the Component Store onto the Browser

or

• From the Browser menu bar select Class>>New>>Report

The name of the new class is highlighted in the Browser, to continue

• Name the new report class

• Double-click on the report class to modify it

236 Chapter 9—Report Classes

When you create a new window from the Component Store or Browser using the New
Report template it does not contain any fields or report objects. The main white area in the
report editor represents a page in which you construct your report. It contains two gray bars
or sections in between which you place your data fields for the report. By default, there is a
Record and End of report section. Any fields that you place in this section will be printed
once for every record selected from your local database, or for every row selected from
your server database. You can add other types of sections including Report and Page
headers, Subtotal sections, Totals and Footer sections. These are described in Report
Sections below.

Report Tools
The toolbar at the top of the report editor lets you set the page size, preview the report on
screen, and show or hide connections between the different sections of the report as shown
down the left-hand side of the report editor. In addition, you set the sort levels in your report
from this toolbar. Position your mouse over each tool to see what it does.

Some of the options in the report editor toolbar are available using the report context menu
by Right-clicking on the report background.

Report Properties 237

The Narrow Sections option displays the section markers as narrow lines which shows you
how the report will look when you print it. The Class Methods option lets you add methods
to the report class, and the Properties option shows the properties for the class. The Page
Setup option or toolbar button opens the Page Setup dialog in which you can select the
printer, and set the page size and orientation. This dialog will vary greatly across the
different operating systems.

Report Properties
This section describes the properties of report classes and how you modify them using the
Property manager to change the behavior of your report.

The properties under the General tab for a report class determine the behavior of the report
while it is printing, and the visual aspects of the report structure. There are properties to set
the margins for the report, the parameters for labels, and you can set up a design grid in
your report to help you place objects accurately. The Sections properties let you show or
hide the various section markers in the report class.

To view the properties of a report class

• Right-click on your report name in the Browser

• Select the Properties option in the context menu

or

• Select your report name in the Browser and press F6/Cmnd-6

or, if you open a report to edit it and for some reason the Property Manager does not pop
up, you can

• Click on the background of the report design screen (for report properties do not click
on a field or section marker)

or

• Right-click on the background of the report design screen

• Select the Properties option in the context menu

238 Chapter 9—Report Classes

Most of the properties are self-explanatory, including the standard class properties such as
name, and createdate: this section describes some of the less obvious ones. The
recordspacing property is the amount of space between each record or row on your report.
The value of this property is used only if the userecspacing property for a section marker is
enabled: by default the space between records is determined by the height of your record
section.

The repeatfactor is the number of times each record is printed, for example, if you want
two of each label set this property to 2.

The islabel property sets up the report as a label report, while labelwidth sets the distance
between each record across the page and labelcount sets the number of labels across the
page.

Report Properties 239

The exportformat property forces the report to export your data to one of the export
formats; it is set to kEXnone by default. You can base a report on the data held in a list
variable by setting the islist property to true and specifying the list name in mainlist. To
print data from an OMNIS data file you must set the mainfile property to the main file class
for the report.

The shownames property specifies whether report objects are displayed in the report editor
with their object name or their dataname (the default). When you set shownames to kTrue,
all objects on your report display their object names.

The units for all measurements in report classes depend on the setting of the OMNIS
preference usecms. You can access the OMNIS Preferences from the
Tools>>Options/Preferences menu option: set usecms to false for inches.

Page Setup Properties
Report classes have their own Page setup details stored as properties of the class.

pagesetupdata stores the page setup data for the class; in the Property Manager you
can click on the down arrow to open the page setup dialog. When the
page setup is specified the property displays (Not empty); you can
delete this text to clear the current page setup

orientation the page orientation, the default is kOrientDefault

paper the paper size or type, one of 50 or so constants, the default
kPaDefault

paperlength the length of the paper in cms or inches, the default is zero.

paperwidth the width of the paper in cms or inches, the default is zero.

scale the scaling factor in percent, the default is zero

copies the number of copies, the default is zero

If any of the page setup properties remain empty or the default is used, the settings in
pagesetupdata for either the class or the global pagesetupdata preference are used.

240 Chapter 9—Report Classes

Report Field Types and Properties
This section describes the different types of report field or object available in OMNIS, and
how you create them from the Component Store or from the Catalog. It also describes the
properties of report fields, and how you modify these to change the appearance and
behavior of fields on a report. Report sections are dealt with in Report Sections below.

You can place data fields, picture fields, graphs and section markers on your report, as well
as background or graphic objects, including lines, ovals, rectangles, and text labels. See the
Window Classes chapter for details about background objects.

The following objects are available for report classes in the Component Store.

Cursor
deselects other tools in the Component Store and reinstates the
pointer tool

Entry
displays the data on your printed report; you need one report field for
every variable or file class field you want to include on your report

Picture
field type that displays picture data, either Windows Metafiles,
bitmaps or MacOS PICT files

Position
special type of section to structure and position parts of your report

Note that the Graph external component may also be available if you have it loaded. You
can place a field on your report from the Component Store and set its dataname property in
the Property Manager, or you can drag a variable or field from the Catalog to create a field
automatically.

241

To create a report field from the Component Store

• Open your report class in design mode

• Drag the required field type from the Component Store onto your report between the
first section marker and End of report sections

or to draw a field of a particular size

• Select the required field type in the Component Store by clicking on its icon

• Click and drag on your report, between the first section marker and End of report
sections, to define the size of field you want

To create a report field from the Catalog

• Open your report in design mode

• Open the Catalog and locate your variable or file class field under the Variables tab

• Drag the required variable onto your report

When you place fields by dragging variables from the Catalog, OMNIS creates a field of the
correct type and sets the dataname property to the name of the variable. For example, if
you drag a Character or Number variable onto your report OMNIS creates a standard data
field, or if you drag a picture variable OMNIS creates a picture field on your report. You
cannot drag some types of variable, such as item references and binary variables.

There are a number of restrictions that apply to dragging variables from the Catalog to
create fields.

– You can drag fields of type Date, Number, Sequence, Character, Boolean, and Picture
only

– You cannot drag local and parameter variables

– You can only drop class and instance variables on to the class to which they belong

– You can only drop task variables onto classes belonging to the same design task

When you place an object on a report, using either of the above methods, the Property
Manager opens showing the properties of the field, but if for some reason the Property
Manager does not pop up you can open it in a number of ways.

To view the properties of a report object

• Open your report in design mode

• Click inside the object, and the Property Manager opens automatically

242 Chapter 9—Report Classes

or

• If the Property Manager is already open, click on the report object and press F6/Cmnd-
6 to bring it to the top

or

• Right-click on the field

• Select the Properties option in the context menu

For report fields the Property Manager shows General, Text, Appearance, and Action
properties. These properties control the behavior and appearance of the field on your report.
The single-most important property for a report field is its dataname, that is, the name of
the variable, column, or file class field the report field uses to display its data.

243

General Properties
All report fields have a name which can be any name you choose to identify the field,
although it should be unique within the same report class. All fields must have a dataname
to display data; this can be the name of a variable, column, or a file class field. You set the
size and position of a field using the left, top, width, and height properties. The units for
all measurements depend on the setting of the OMNIS preference usecms: set this to false
for inches. Data and picture fields have the following general properties.

name the name of the report field; this can be literally anything you choose to
use to identify the object

dataname the name of the variable, column, or file class field the report field uses
to print its data

noreload if true the value of the field is not reloaded at the start of totals or
subtotals sections containing the field

calculated if true the value of the field is calculated using the expression in the
text property

text the text for the object or the calculation for calculated fields

ident the internal id of the object; note you cannot change this

objtype the type of the report field; note you cannot change the type of existing
report objects

top position of the object relative to the top of the section containing the
object, not the top of the report class or printed page

left position of the object relative to the left-hand edge of the report,
excluding the left margin

height height of the object

width width of the object

floating if true, the field is floating, that is, you can position the object pixel-by-
pixel; if false, the object snaps to the nearest row in the report

visible if true the object is printed on the report, otherwise if false the field or
its data is not printed; you may want to calculate a field or use its value
elsewhere in the report, but hide it on the printed report

nolineifempty if true and the field contains no data, the line containing the field will
not print; this is useful for address labels when certain lines may be
empty

horzextend if true the field will expand horizontally to accommodate larger
amounts of data

horzslide if true and the preceding field has extended to accommodate more data,
the current field will move to the right

244 Chapter 9—Report Classes

formatstring string containing formatting characters that formats the display of data
on the report

formatmode the type of formatting for the field: can be character, number, date or
boolean

totalmode totaling mode for the field, usually a field within a subtotals or totals
section of a report: can be total, average, count, minimum, maximum

nosecifempty if true and the field has no data, the section containing the field is not
printed

dupblanks if true and the field contains the same value as the previous row or
record, the field remains blank

negbrackets if true negative numeric values are shown in parentheses

showcommas if true the thousand separator is displayed for number fields

Note that picture fields have the properties name down to nolineifempty only.

Normally report objects snap to the nearest row in the report class. However if you set an
object’s floating property to kFalse you can position the object precisely in your report.

When a report field appears in a totals or subtotals section, the value of the field is loaded
automatically each time it is encountered in the totals section. However you can stop values
being reloaded for an object by setting its noreload property to kTrue. When noreload is
kTrue for an object, OMNIS does not reload its previous value when starting to print a
section, nor does it restore it after printing the section. You can control field values in
sections in your custom $print() methods. If the same variable is referenced by objects in
more than one totals or subtotals section, you need to set noreload for each object. The
noreload property is ignored for sort fields.

Text Properties
The text properties control font size, style, alignment, and color of the data in the field.

fieldstyle the field style for the report object

font font name for the field

fontsize font size for the field

fontstyle font style for the field

textcolor text color of the field

align alignment or justification of the field

fontextra extra spacing for the text on the report

Background Objects 245

Appearance Properties
zeroempty if true zero values are displayed as blanks

shownulls if true the object displays “NULL” for undefined values

Picture fields also have the following property under the Appearances tab.

noscale if true pictures are not scaled to fit the size of the report field,
otherwise pictures are scaled by default

Action Properties
autofind if true the field performs an automatic find (for indexed fields in

an OMNIS data file only); when the field is triggered on the
report, OMNIS looks for a exact matching record for the field

Background Objects
All data and picture fields on a report are referred to as foreground objects. All lines,
rectangles, ovals, and any other graphic objects you place on your report are background
objects. The latter do not hold data and cannot have methods attached to them or receive
events; they are purely graphical devices for enhancing the appearance of your report. Any
background objects you place in the Record section of your report will be printed for every
record or row of data. Likewise any graphics you place in a subtotal heading section, the
report header or footer section will be printed each time the section or page is printed.

You can create various types of background objects including text and labels from the
Component Store.

To view background objects in the Component Store

• Click on the Background Components button on the Component Store toolbar

You place background objects on your report in exactly the same way as for fields. For
example, you can click on a component icon in the Component Store and click-and-drag the
mouse on your report to create an object of a particular size and shape.

Note that you can paste a picture or bitmap image onto your report as a background object
using the Edit>>Paste or Edit>>Paste from File menu items. The former choice pastes a
picture you have cut or copied to the clipboard; the latter pastes a Windows metafile or
bitmap or a Mac PICT file directly onto the report background.

246 Chapter 9—Report Classes

Report Sections
This section describes how you structure your report class using report sections. Sections
are horizontal markers or dividers across the report class that structure and position the data
when your report is printed. To create a complex report with headers, footers, subtotals, and
totals, such as an invoice or catalog listing, you have to place the appropriate sections in
your report class in the right order. When you enable the various sections in your report
using the Property Manager, their position and order is handled for you automatically.

There are two sections that you must have in a report: the Record section indicates the start
of the display of records or rows of data, and the End of report section indicates the end of
the report. These sections appear automatically in every new report class.

The following section types are available.

Report heading defines the area at the start of the report, which prints
only once; you can use this to create a report title page

Page header defines an area at the top of each page below the top
margin, printed at the top of each new page

Subtotal heading prints before each subtotals section; it would normally
contain column headings for your subtotal sections

Subtotal heading 1 to 9 each subtotal heading prints before its corresponding
subtotal level

Record defines the section containing the fields that print your
data; the record section expands to accommodate your
data which may extend over several pages when printed

Positioning divides a section into two or more subsections; you can
control exactly where on the page a positioning section is
printed

Subtotals level 1 to 9 defines the fields that will print subtotals; you can have
up to 9 levels of subtotaling

Totals prints at the end of the report and defines the fields that
you want to total

Page footer defines the area at the bottom of each page; printed at the
bottom of each new page of your report

End of report defines the end of the report; must be present on every
report

Report Sections 247

To enable a report section

• Open your report class in design mode

• Click on the background of your report to open the Property Manager

or, if the Property Manager does not open for some reason

• Right-click on the background of your report and select the Properties option from the
context menu

• In the Property Manager, click on the Sections tab

• To enable a particular report section set the appropriate property to true

248 Chapter 9—Report Classes

When you enable a particular report section it is shown on your report in the correct
position. For example

To create a page header for your report

• View the properties for your report (as above)

• Set the pageheader property to true in the Property Manager

The Page header section will appear on your report above the Record section, or any
subtotal headings if you have any.

Any fields or graphics you place in the header section, that is between the Page header
section and the next section marker will print at the top of each page. The following
example will illustrate how the different sections or levels interrelate.

To create a page footer for your report

• View the properties for your report (as above)

• Set the pagefooter property to true in the Property Manager

Report Sections 249

The Page footer section will appear on your report below the Record section, or any
Subtotals and Totals sections if you have any.

Any fields or graphics you place in the footer section, that is, below the Page footer section
marker, will print at the bottom of each page. Note that the connection between the different
sections is shown in the left margin of the report editor: the current section is shown in red.

When printing to a non-paged device such as File or HTML, by default the footer section is
not printed. The Report header and first Page header sections are printed at the beginning of
the report. However it is possible to force the footer section to be printed by calling
$printsection(kFooter) for the report instance. The default positioning for a footer for a
non-paged device is to follow on from where the last section stopped printing.

To change the height of any section, including the record, header and footer sections, you
can click on the section marker (the gray bar) and drag it into position. All the sections
below the one you move will adjust automatically.

To show you more how the report will look when you print it, you can view the sections as
narrow lines.

To view sections as narrow lines

• Click on the Narrow sections button in the report editor toolbar

or

• Right-click on the report background and select the Narrow Sections option

250 Chapter 9—Report Classes

Sorting and Subtotaling
To implement sorting and subtotaling for your report, you need to specify the fields on your
report to be sorted, and create subtotals sections containing those fields. Sort fields define
how OMNIS subtotals the records or rows of data when printing a report. With no sort
fields, OMNIS displays records in the order they are listed on your server, or in the order
the data was inserted into your OMNIS data file. When you add sort fields to your report,
the report will print subtotals when the values change in the sort fields.

To specify sort fields for your report

• Open your report in design mode

• Click on the Sort Fields button in the report editor toolbar

Sorting and Subtotaling 251

The Sort fields window opens.

In the Sort fields window you can specify up to nine sort fields by entering each field or
variable name in the left-hand column. Note that you can use the Catalog to enter your field
or variable names. These sort fields form a nested sequence of sorts on the records that
trigger printing of up to nine nested subtotal sections.

To subtotal a field, place a copy of the field in the Subtotal section and select the
appropriate totalmode for the field. This is independent of the sort fields, which trigger the
printing of the Subtotal sections.

When you enter a field or variable name in the list of sort fields the sorting options are
enabled for that field. You can enable any of these options by clicking on the cell and
selecting true.

252 Chapter 9—Report Classes

Each sort field has the following options.

– Descending sort
sorts the field in descending (Z to A and 9 to 0) instead of the default ascending order

– Upper case conversion
converts field values to upper case before sorting, so the use of mixed case in your
database does not affect subtotaling or sorting

– Subtotals when field changes
tells OMNIS to print subtotals using the corresponding subtotal section (1 to 9) when
the value of the field changes; that is, if sort field 4 changes, subtotal level 4 will print

– New page when field changes
starts a new page as well as printing a subtotal when the value of the field changes

When you enable the Subtotals or New page options for a sort field, you can specify the
number of characters that must change before a subtotal is triggered or new page is printed.

Subtotal Sections
You can specify a Subtotal heading section in your report. It prints before the first Record
section and successive Record sections following each Subtotals section. The subtotal
heading can print column names and anything else you want to apply to each subtotaled
Record section.

The Subtotals section prints whenever the Record section breaks on the corresponding sort
field, with the subtotal printing before the record with the changed value. Since there are up
to nine sort fields, you can have up to nine Subtotal heading and Subtotal levels numbered 1
through 9 corresponding to the sort fields specified in the report. The higher numbered sort
fields are nested within the lower ones and hence change more often. That is, sort field 5
changes within sort field 4 which changes within sort field 3, and so on. Correspondingly,
the Subtotal heading and Subtotals sections with higher numbers print more often as the sort
fields change.

When you have multiple subtotals which print consecutively, the corresponding heading
sections print one after another, starting with the one for the last subtotal. Subtotals and
totals can be aggregations of several kinds, including sums, averages, counts, minimums, or
maximums, depending on the field’s totalmode property. OMNIS maintains the total for
each subtotal printing, then resets the subtotal to zero for the next section.

The Totals section prints at the end of the report. As for subtotals, you place the fields to
aggregate in this section, and OMNIS accumulates the aggregate values across the entire
report. You can set the totalmode property for a field in the totals section.

Section Properties and Positioning 253

Section Properties and Positioning
When you print a report, each section follows the previous section by default, and is
positioned down the page according to the height of the previous section set in the report
class. However for some types of section, you can control where a section prints and
whether or not a new page is forced using the pagemode and startmode properties of the
section. You can use a special type of section marker called a position section to print part
of your report literally anywhere on the page. To do all these things you have to modify the
properties of the appropriate section marker.

To view the properties of a section

• Open your report class in design mode

• Click on the appropriate section to view its properties in the Property Manager

or, if the Property Manager does not open or come to the top

• Right-click on the section marker and select the Properties option

Page Mode
You can control whether or not Record, Subtotals, Totals, and Subtotal heading sections
start a new page when they are encountered by setting their pagemode property. You can
select one of the following options for this property.

– Nopage
does not force a new page; uses the pagination in the report class (the default)

254 Chapter 9—Report Classes

– Newpage
always starts a new page before this section

– Testspace
starts a new page before starting this section if there is not the specified amount of
space available on the current page

If you select the Testspace option, the pagespacing property is enabled in the Property
Manager in which you can enter the amount of space required for the section. If this amount
of space is not available on the page, a new page is started. The figure you enter in
pagespacing is shown on the section marker.

OMNIS works with units that are 1/72 of an inch; therefore it may round exact numbers in
centimeters or inches to the next real unit. For example, 1cm becomes 0.99cm.

Start Mode
All sections except for Page footer and End of report let you specify the startmode, which
tells OMNIS where to start the section. You can choose one of the following options.

– Follow previous section
starts the section on the line following the end of the previous section (the default)

– Fromtop of previous section
starts the section n inches/cms from the top of the previous section

– Fromend of previous section
starts the section n inches/cms from the end of the previous section

– Fromtopmarg
starts the section n inches/cms from the top margin of the report

– Frombottommarg
starts the section n inches/cms from the bottom margin of the report

When you choose one of the start modes the startspacing property is enabled in the
Property Manager, which lets you enter a measurement for the startmode. The startmode
and spacing is shown on the section marker.

OMNIS ignores previous section settings if the previous section was a Page header section
or a Positioning section within a Page header section. The spacing comes before the page
start test that examines the amount of space left on a page. OMNIS ignores top and bottom
margin settings for reports that are not paged.

Note that when you set up a report to print labels, you can use the Fromtop or Frombottom
options to set the spacing between your labels.

Printing Reports 255

You can enter a negative value for the start spacing of a positioning section, for example
Start –1.000cms from end of previous section. This allows you to align fields with the
bottom of an extending field.

Record Spacing
The default spacing between records or rows of data on your printed report is determined by
the height of the Record section in your report class. However you can override this spacing
by setting the userecspacing property for the Record section. This property forces the
report to use the vertical spacing set in the recordspacing property of the report class.

Positioning Sections
A Position section divides an existing section into two or more subsections, letting you
reposition part of a section somewhere else on the printed page. For example, using a
positioning section, you could divide a heading section into two parts to print the report title
and description at the top of the page, and the report date at the bottom of the page.

A positioning section placed over the second line of a two-line extending field with the
Follow previous section property prevents the second line from printing as a blank. You can
also follow extending fields by a positioning section with Follow previous section to
prevent them from writing over any fields below. A positioning section within a subtotal
section lets you trigger a print position change by changing a sort field value.

Printing Reports
OMNIS provides a wide range of choices for printing your reports, including sending your
report to the printer, the screen, to a page preview, to a text or HTML file. Users can set the
report destination using the File>>Print Destination menu option. In your finished library,
you can provide a menu, popup menu, or toolbar button to print your report to the required
destination. There are a number of commands that let you set the print destination, including
Send to screen, Send to file, and Send to clipboard.

While you’re creating your report class you may need to print it to try it out. You can use
one of the buttons on the report editor toolbar to print the current report class. From these
tools you can print to the current printer, a page preview window, or to the screen.

256 Chapter 9—Report Classes

Report Destination Dialog
You select the output destination or device for your reports from the print destination
dialog, available from the File>>Print Destination option on the main OMNIS menu bar.
This dialog may also contain any custom devices, such as the HTML device.

The devices in the Print Destination dialog include

– Printer
the current printer

– Preview
reports are sent to a report preview window in OMNIS

– Screen
reports are sent to a report window in OMNIS; the default destination

– Disk
the report is sent to the file specified in the Parameters pane of the Print Destination
dialog; the file is stored in a cross-platform proprietary binary format

– Clipboard
reports are sent to the clipboard in text format

Printing Reports 257

– Port
the report is sent to the port specified in the Parameters pane

– File
the report is sent to a text file specified in the Parameters pane

– HTML
the report is sent to an HTML file for display on your website

– Memory and DDE/Publisher
are also available but by default are not visible in the Print Destination dialog (you can
set their $visible device preference to make them visible)

To set the report destination

• Select File>>Print Destination from the main OMNIS menubar

• Select a report destination and click OK, or double-click on a destination

Printer
The Printer option sends the report to the current printer. Under Windows, selecting the
printer as destination opens a list of installed printers, and changing to a new printer does
not affect the default printer setup as defined in the Windows Control Panel. Note that you
can change the page setup with the File>>Page Setup menu item.

Preview
The Preview option displays a full page on the screen. Text is “Greeked” if the screen size
is too small, dots representing the characters so that the whole page fits the available screen
area.

Screen
The Screen option is the default report destination at startup. It displays the report on the
screen without the normal page margins. You can copy graphics in Windows metafile,
bitmap or Macintosh PICT format from the screen and page preview report window by
selecting an area with the mouse and using the Edit>>Copy menu item. You can copy text
in the same way, and you can select and copy more of the report than is displayed on screen.
When you drag-and-select data in your report, the window will scroll. The Select All option
in the edit menu selects the whole report.

You can have more than one screen/page preview report open at a time. When you display
reports on the screen, you can use the horizontal and vertical scroll bars to view the report,
and the Page up, Page down, and arrow keys as well.

OMNIS displays a screen report window as soon as it has prepared the first page of data,
that is, normally it does not wait for the report to finish. Therefore as you scroll a long
report it may take a few seconds to print each page.

258 Chapter 9—Report Classes

Disk
The Disk file report device sends the report output to a file on disk in a cross-platform
binary format. If you double-click on the Disk icon in the Report Destination dialog
OMNIS prompts you for a disk file name.

You can print to the Disk device on one platform, reload the file in OMNIS and print it on
another platform. Alternatively, you can print the output from the Disk device using the
File>>Print Report From Disk menu option, or using the Print report from disk command.

Clipboard
The Clipboard option sends the current report to the clipboard as an unpaged, text-only
report suitable for pasting as text into other applications.

Port
The Port option sends the current report to a Windows serial or parallel port or a MacOS
Modem or Printer port specified in the Parameters pane. This device also uses the settings
in the Page sizes pane: see the File device.

Only one program can have a particular port open; if a port is open in OMNIS and it is also,
for example, the port used by the Spooler, then the Spooler will not be able to function.

Printing Reports 259

Under MacOS, there is an option on the Parameters pane to Convert for Imagewriter. When
selected, the characters beyond ASCII 127 convert to a combination of a character,
backspace, and accent character so that the report can print accented characters and
umlauts.

File
The File print destination sends the current report to a file. If you double-click on the File
icon in the Report Destination dialog OMNIS prompts you for a file name. OMNIS does
not close the file at the end of the report so you can append multiple reports into a single
file. This option enables the Page sizes pane in the Report Destination dialog.

In the Page sizes pane you can specify the number of lines per page to use in reports printed
to a file or a port. OMNIS stores the setting in the OMNIS configuration file.

If you check the Generate paged reports check box, you can also check the Send form feed
check box, which tells OMNIS to terminate pages with a form feed, or fill in the Line per
page field with a number of lines to which to pad out each page. Checking the Restrict page
width option lets you enter the number of Characters per line.

HTML
The HTML report device is a custom device that prints a report to an HTML file on disk.
When installed and loaded it appears in the print destination dialog and behaves like any

260 Chapter 9—Report Classes

other standard printing device. You can send any OMNIS report to the HTML device and
access and change the device using the notation. If you double-click on the HTML icon in
the Report Destination dialog OMNIS prompts you for a file name.

The HTML printing device uses HTML tables and standard HTML tags to position and
structure the output of the OMNIS report. The default background color of the HTML file
is white. The color of the text in the original report class is retained in the HTML output
file. Where possible, the device converts any image or picture data into JPEG images,
which are written to disk and linked to the output HTML file.

Memory device
The Memory device lets you send a report to a binary variable or field, which you can hold
in memory or save in a database. At a later date you can reload the contents of the binary
variable or field and print the report to the printer or any other destination. You can access
this device using the notation only (by default it is not shown in the Print Destination
dialog). You can print the output from the Memory device using the Print report from
memory command.

DDE/Publisher Device
The DDE/Publisher lets you send a report via DDE under Windows, or to an edition under
MacOS. You can access this device using the notation only (by default it is not shown in the
Print Destination dialog).

Report and Field Methods
You can create a report class, add fields and objects to the report from the Component
Store, but to print sophisticated reports you will need to add some programming behind the
fields and sections on your report. To do this, you need to write code that uses the OMNIS
print commands or methods. You can add class methods to the report itself to control
printing, and you can add field methods to each field or section marker on your report to
control things like the interval breaks and subtotals.

You can add up to 501 methods to each field or section on your report, and a further 501
methods to your report class. You enter the methods for a report class and its fields using
the method editor.

When you create a report from the Component Store it contains a $construct() and
$destruct() method by default. You can add code to these methods to control the opening
and closing of the report instance. For example, if your report uses a list you can build the
list in the $construct() method in the report. You can use the $open() method or the Prepare
for print command to open a report instance, you can finish a report using $endprint() or the
End print command, and you can close a report instance using the $close() method. You can
send a list of parameters to the $construct() method when you open the report instance using
the $open() method. You can send data to a report instance record by record using the Print
record command, or print an entire report using the Print report command. Alternatively,

Report and Field Methods 261

you can send print messages to a report instance using the notation. For example, you can
send a $printrecord() message to print a record to the report instance, or send an $endprint()
message to finish the report; there is no equivalent method for the Print report command.
You can override the default handling for these messages by writing your own custom
methods with the same name. You enter these custom methods in the class methods for the
report class.

To add a method to a report class

• Open your report class

• Right-click on the report background to open the report context menu

• Select the Class Methods option

• Right-click in the method list in the method editor and add your method

To add a method to a report field or section

• Open your report class

• Right-click on the field or section to open its context menu

• Select the Field methods option

• Right-click in the method list in the method editor and add your method

The next section in this chapter describes the type of methods you can add to report classes
and objects.

262 Chapter 9—Report Classes

Report and Printing Notation
This section describes the properties and methods available for report classes, report
objects, sections, report instances, and the printing devices available in OMNIS.

Print Devices and the Current Device
The following properties under $root handle the group of currently installed print devices or
destinations, and the current printing device.

– $devices
group of currently installed printing devices, including Printer, Preview, Screen, Disk,
Memory, Clipboard, Port, File, DDE/Publisher, and any custom devices you may have
installed. You can set a reference to a device by using

Set reference MyRef to $devices.Screen

– $cdevice
the current printing device or report destination. You can change $cdevice by assigning
a device from the $devices group, for example, to specify the screen as the current
device use one of:

Calculate $cdevice as kDevScreen

Calculate $cdevice as $devices.Screen

Calculate $cdevice as $devices.$findident(kDevScreen)

Print Devices
The $root.$devices group contains the currently installed printing devices plus any custom
devices you may have installed. A device has the following properties; $canassign for these
properties is true unless specified.

– $name
the name of the device; $canassign is false

– $title
the string used to identify the device in the Print destination dialog

– $iconid
the id of the icon for the device as displayed in the Print destination dialog, zero by
default which means the device uses the default icon

– $ident
a unique numeric identifier for the device in the $devices group; $canassign is false

– $visible
if true, the device is shown in the Print destination dialog

Report and Printing Notation 263

– $isopen
returns true if the device is open and in use; $canassign is false

– $istextbased
returns true if the device is text-based, otherwise, the device is image-based, such as
Printer, Screen, or Preview; $canassign is false

– $cangeneratepages
this is a read only property. If it returns true, the device can generate pages and all
normal page headers and footers will be printed. If it returns false, only the report
header and first page header are printed. No footer section is printed.

– $cankeepopen
returns true if the device can be kept open for long periods of time, such as the File
device; otherwise, the device should be opened prior to printing and closed
immediately after printing has finished, for example you must do this for the Printer;
$canassign is false

You can use the following methods for a device; $cando() returns true if a device supports
the method.

– $open()
opens the device ready for printing or transmitting text or data. Some devices such as
the Screen or Preview can only be opened from a print job when printing a report

– $close()
closes the device, if the device is open

The following example prints two reports in the same print job, and uses the $open() and
$close() methods to initialize the Printer.

Set reference theDevice to $devices.Printer

If theDevice.$isopen ;; check if printer is in use

If theDevice.$canclose()

Do theDevice.$close()

Else

Quit method kFalse ;; if device can’t be closed

End if

End If

Do theDevice.$open() Returns ok ;; open the printer

If ok ;; print the reports

Set report name reportOne

Print report

Set report name reportTwo

Print report

Do theDevice.$close() Returns ok ;; close the printer

End If

264 Chapter 9—Report Classes

– $canclose()
returns true if the device can be closed. If you opened the device using $open(), this
method returns true; if you opened the device via a print job and the job is still in
progress, it returns false

– $sendtext(cText, bNewLine, bFormFeed)
sends the text in cText to the current device; all normal character conversion takes
place. If bNewLine is true, the device advances to a new line or sends an end of line
character; if bFormFeed is true, a new page is started, or a form feed character is sent.
Data is sent in parameter order: first text, then the new line, then the form feed.

The following example sends some text to the File device.

Set reference theDevice to $devices.File

If theDevice.$sendtext.$cando()

Do $prefs.$printfile.$assign(‘HD:MyFile’)

Do theDevice.$open() Returns ok

If ok

Do theDevice.$sendtext(‘Some text’,kTrue) Returns ok

Do theDevice.$sendtext(‘More text’,kTrue) Returns ok

Do theDevice.$close() Returns ok

End If

End If

– $senddata(cData[,cData1]…)
sends the specified data in a binary format to the device; no character conversion takes
place unless the data is of type kCharacter. If more than one parameter is specified the
data is sent in individual packets

When using the $senddata() method you must consider type conversion. The method
expects binary data, and therefore any data which is not in a binary format is converted to
binary. For example, if you pass an integer variable, the data is converted to a 4 byte
binary. In some cases, due to cross platform incompatibilities, if you want to be certain of
the order in which the data is sent, and of the values which are sent, you should use
variables of type Short integer (0 to 255), for example

Calculate myShortInt1 as 13

Calculate myShortInt2 as 10

Do myDevice.$senddata(myShortInt1, myShortInt2)

You can send raw data to the Port or File device. The following example prints a report to a
binary variable and sends the binary data to the Port device.

Report and Printing Notation 265

; print a report to a binary variable

Do $cdevice.$assign($devices.Memory)

Do $prefs.$reportdataname.$assign(‘myBinaryField’)

Set report name myReport

Print report

; now send the report to the port

Set reference theDevice to $devices.Port

If theDevice.$senddata.$cando()

Do theDevice.$open() Returns ok

If ok

Do theDevice.$sendata(myBinaryField) Returns ok

Do theDevice.$close() Returns ok

End If

End If

– $flush()
flushes the device. For the File device $flush() will ensure all data is written to disk;
you can safely call $flush() for devices which do not support this method; $cando()
returns true for all devices that support $senddata() or $sendtext()

Global Printing Preferences
There are a number of OMNIS preferences under $root.$prefs that handle the print devices
and their parameters. You can set these using the Property Manager or using the notation.

– $reportfile
the full path and file name for the Disk device

– $printfile
the full path and file name for the File device

– $editionfile
the full path and file name for the DDE/Publisher device

– $pages
the page or page numbers to be sent to the device; all devices support this property.
You can specify pages as a comma-separated list or range of pages separated by a
hyphen, or any combination. Prefixing a range with an “e” will print even pages within
the range, or with an “o” will print odd pages within the range. For example
1,3,7,10-15,25-20,e30-40,o30-40

– $reportdataname
the name of the binary field for the Memory device

– $reportfield
the name of the window field for a Preview or Screen report; if you specify this
property the report is redirected to the window field

266 Chapter 9—Report Classes

– $windowprefs
the optional title and screen coordinates for a Screen or Preview window; the syntax is
the same as the Open window command, such as My Title/50/50/400/300/STK/CEN;
the title is also used as the document name when printing to the Printer

– $waitforuser
if true, method execution is halted until the user closes the Screen or Preview window

– $hideuntilcomplete
if true, a Screen or Preview window remains hidden until the report is finished

The following example specifies the Screen as the current device and sets up the
preferences for the report window.

Do $cdevice.$assign(kDevScreen)

Do $prefs.$windowprefs.$assign(‘MyTitle/20/20/420/520/CEN’)

Do $prefs.$waitforuser.$assign(kFalse)

Do $prefs.$hideuntilcomplete.$assign(kTrue)

– $charsperinch
the number of characters per inch when printing to a text-based device

– $linesperinch
the number of lines per inch when printing to a text-based device

– $generatepages
if true, reports generate paged output when printing to text-based devices, that is, page
headers and footers are generated as normal; otherwise if false, only one report header
and page header is printed at the beginning of the report

– $linesperpage
the number of lines per page when $generatepages is true

– $restrictpagewidth
if true, the width of a page is restricted when printing to text-based devices

– $charsperline
the number of characters per line when $restrictpagewidth is true

– $sendformfeed
if true, form feeds are sent to text-based devices after each page

– $appendfile
if true, data is appended to the current print file specified in $printfile, otherwise if
false, the file is overwritten when printing to the File device; note if the device is
already open prior to printing a report, the file is appended to regardless

– $istext
if true, forces a non-text device to behave like a text-based device using the same
preferences as text-based devices

Report and Printing Notation 267

– $portname
the name of the port when printing to the Port device

– $portspeed
the port speed setting when printing to the Port device

– $porthandshake
the handshake when printing to the Port device; this can be kPortNoHandshake,
kPortXonXoff, or kPortHardware

– $portparity
the parity checking when printing to the Port device; this can be kPortNoParity,
kPortOddParity, or kPortEvenParity

– $portdatabits
the number of databits when printing to the Port device; this can be kPort7DataBits, or
kPort8DataBits

– $portstopbits
the number of stop bits to be used when printing to the Port device. This can be
kPort1StopBit or kPort2StopBits

The following example sets up the preferences for the Port device.

Do $prefs.$portspeed.$assign(9600)

Do $prefs.$porthandshake.$assign(kPortNoParity)

Do $prefs.$portdatabits.$assign(kPort8DataBits)

Do $prefs.$portstopbits.$assign(kPort1StopBit)

Do $prefs.$porthandshake.$assign(kPortXonXoff)

Do $prefs.$charsperinch.$assign(10)

Do $prefs.$linesperinch.$assign(6)

; Note $charsperinch and $linesperinch are used for

; all text-based devices

There is also a group of Page setup properties under $root.$prefs giving access to the global
page settings. These are

– $orientation
the page orientation; this can be kOrientDefault, kOrientPortrait, or kOrientLandscape

– $paper
the paper type, a constant; one of 50 or so paper sizes or types including US Letter,
European A sizes, envelope sizes, custom sizes, and so on

– $paperlength
the length of the paper in cms or inches depending on the $usecms preference

– $paperwidth
the width of the paper in cms or inches depending on the $usecms preference

268 Chapter 9—Report Classes

– $scale
the scaling factor in percent

– $copies
the number of copies

Report Instances
Report instances have the following methods.

– $printrecord()
prints the Record section; same as the Print record command

– $printtotals(section)
triggers a subtotal or totals section; section is the highest level subtotal to be printed, a
constant, such as kSubtotal5 or kTotals

– $printsection(section)
prints a report section; section is a constant, kRecord, kTotals, and so on, or a reference
to a field on the report instance

– $accumulate(section)
accumulates the subtotals and totals section, and is sent during the printing of a record
section

– $checkbreak()
checks if a subtotal break is required, returns a constant: kSubtotal1 to kSubtotal9 or
kNone if subtotal break is not required

– $skipsection()
skips the current section; if you call this during $print() for a field, no further fields will
be printed for that section

– $startpage(pagenumber)
starts a new page; adds the page header section to the page, and for the first page also
adds the report header section

– $endpage(pagenumber)
ends a page and adds the footer section to the page; without parameter ends all pages
which have been started

– $ejectpage(pagenumber)
ejects a page; without parameter ejects all pages which have been ended and not
ejected; this method ejects pages which have an active section intercepting their
boundary when the section has finished printing

– $endprint()
finishes the report; prints the final subtotals and totals sections and ejects all the
remaining pages

Report and Printing Notation 269

– $openjobsetup()
opens the job setup dialog. You can call this method immediately after $open() for a
report; if it returns kFalse as the result, the user has selected Cancel, and you should
close the report instance. You cannot call $openjobsetup() during $construct() since a
print job is not created until $construct() finishes.

– $cdevice
reference to the printing device for the instance; if you wish to change the device, you
must do so before returning from $construct() of the report instance, and before you
start printing the first record. For example, execute the following at the start of
$construct() to specify the page Preview device for the current instance

Do $cinst.$cdevice.$assign($devices.Preview)

The device preferences are listed under the global printing preferences. Report instances
have their own printing preferences which are local to the instance. They take their initial
values from the global printing preferences. You can only assign values to these properties
in $construct(), and before you start printing the first record.

The $firstpage property always returns 1, and $canassign() is false. The $lastpage property
returns the last page. You cannot set $lastpage in the report instance to reduce the number
of pages generated, that is, once pages have been generated they cannot be removed from a
print job.

Note that the $pageheight property of a report instance returns the height of the printable
area excluding the margins, headers, and footer areas of the report.

The following method prints a report from a list and uses a For loop to print the report
record by record.

Do $reports.Report1.$open('*') Returns Myreport

For lineno from 1 to Mylist.$linecount step 1

Do Mylist.[lineno].$loadcols()

Do Myreport.$printrecord()

End For

Do Myreport.$endprint()

270 Chapter 9—Report Classes

The following method generates subtotal breaks every fifth record. The $reccount property
is incremented and the subtotals accumulated manually.

Do $reports.Report2.$open('*') Returns Myreport

For lineno from 1 to Mylist.$linecount step 1

Do Mylist.[lineno].$loadcols()

Calculate Myreport.$reccount as Myreport.$reccount+1

Do Myreport.$printsection(kRecord)

Do Myreport.$accumulate()

If mod(lineno,5)=0

Do Myreport.$printtotals(kSubtotal1)

End If

End For

Do myreport.$endprint()

Page Setup Report instance properties
You can change the page setup information of a report instance without effecting the global
settings. The properties which can be set are;

– $pagesetupdata
this can only be calculated prior to printing the first record; the best time is during
$construct. When a print job has started, $canassign returns kFalse.

– $orientation, $paper, $paperlength, $paperwidth, $scale, and $copies
any of these properties can be changed at any time during a print job, and will effect the
next page to be generated. When $startpage for a page has been called, changing these
properties will take effect from the next page onwards. A good time to make changes
for the next page is during a $endpage for the current page, but it can be done from
anywhere prior to the $startpage call for a page to be effected

Once a print job is complete and $endprint has been called, $canassign returns kFalse for all
these properties.

Report Field and Section Methods
Report fields and sections contain a $print() method that controls that particular field or
section when it is printed. Every time a field or section is encountered during printing its
$print() method is called, so for fields in the report Record section $print() is called for
every row of data. You must end your own custom $print() methods with a Do default
command to carry out the default processing for that line after your code has executed.

For example, the following $print() method for a report field prints the field in bold if its
value is greater that 1000.

Report and Printing Notation 271

If parm_value>1000

Do $crecipient.$fontstyle.$assign(kBold)

Else

Do $crecipient.$fontstyle.$assign(kPlain)

End If

Do default

Report Object Positioning
When a report field prints, its position and data are passed to its $print() method; when a
report section prints its position only is passed. You can set up parameter variables of type
Field reference in the $print() method for a report section or field to receive its position and
data. You can manipulate the position variable using the report object positioning notation.
If you change the position of a section all objects in that section are affected together with
all subsequent sections in the report. Making changes to the position of an object does not
affect other objects.

A report position variable has the following properties.

– $inst
the report instance to which the position belongs

– $posmode
the mode of the report position, which is one of the following constants; assigning
$posmode does not change the physical position of the object, but it does change its
coordinates to the new coordinate system.

kPosGlobal the position is global to the print job, relative to the top-left of the local
area of the first page

kPosPaper the position is relative to the top-left of the paper edge of the page
specified by $posvertpage and $poshorzpage

kPosPrintable the position is relative to the top-left of the printable area of the page
specified by $posvertpage and $poshorzpage

kPosLocal the position is relative to the top-left of the local area (excluding the
header and footer sections, and the margins) of the page specified by
$posvertpage and $poshorzpage

kPosHeader the position is relative to the top-left of the header area (union of report
and page header sections) of the page specified by $posvertpage and
$poshorzpage

kPosFooter the position is relative to the top-left of the footer area of the page
specified by $posvertpage and $poshorzpage

kPosSection the position is relative to the top-left of the section specified by
$possectident

272 Chapter 9—Report Classes

In addition, you can set $posmode to one of the following values to return the coordinates
of an area on the page specified by $posvertpage and $poshorzpage.

kBndsGlobal returns kPosGlobal coordinates. The top, left, width, and height are
calculated to global coordinates of the local area of the page

kBndsPaper returns kPosPaper coordinates. The top and left are zero, and the height
and width are calculated to the height and width of the paper of the page

kBndsPrintable returns kPosPrintable coordinates. The top and left are zero, and the
height and width are calculated to the height and width of the printable
area of the page

kBndsLocal returns kPosLocal coordinates. The top and left are zero, and the height
and width are calculated to the height and width of the local area of the
page

kBndsHeader returns kPosHeader coordinates. The top and left are zero, and the
height and width are calculated to the height and width of the header
area of the page

kBndsFooter returns kPosFooter coordinates. The top and left are zero, and the height
and width are calculated to the height and width of the footer area of the
page

– $possectident
the $ident of the section when $posmode is kPosSection

– $posvertpage
the vertical page number when $posmode is not kPosGlobal or kPosSection

– $poshorzpage
the horizontal page number when $posmode is not kPosGlobal or kPosSection. This
will usually be set to 1. Horizontal page numbers apply when horizontal pages are
enabled

– $top
the top of the position in cms or inches local to its $posmode

– $left
the left of the position in cms or inches local to its $posmode

– $height
the height of the position in cms or inches

– $width
the width of the position in cms or inches

Measurements are in either cms or inches depending on the setting of the usecms OMNIS
preference which you can change in the Property Manager using the
Tools>>Options/Preferences menu option.

Report and Printing Notation 273

Page layout
To understand the positioning notation it helps to look at the layout of the report on paper or
screen. The area available for printing is limited to the printable area on the paper as
determined by the printer or device. Within this space OMNIS reports print to the header,
footer, and local or global areas, that is, the space remaining after subtracting the header,
footer, and margins specified in the class. Note that OMNIS subtracts the margins specified
in the class from the paper edge, rather than the boundary of the printable area.

Header

Footer

Local or
Global area

Margins

The position of a report object, either a section or report field, is relative to the local area on
the current page, or the global area for the entire report.

274 Chapter 9—Report Classes

Object Object

Local coordinates are relative to the local
area on the current page

Global coordinates are relative to the global
area for the entire report

The following example method produces a report with multiple columns by configuring
itself according to the current paper size and orientation. The report class contains various

Report and Printing Notation 275

instance variables including iCurColumn, iMaxColumns, iLeftAdjust to handle columns and
a global left adjustment. The data is taken from a list, but your data can be from any source.
The Record section contains one field that gets its data from the list. Note the code for this
method does the positioning and the Do default command prints the section.

; $print() method for Record section in a column report

; Declare Parameter var pThePos of type Field reference

; and Local var posBnds of Row type

; pThePos is in global coordinates and does not contain the page

; number, so make a copy and convert it to page-based coordinates

Calculate posBnds as pThePos

Calculate posBnds.$posmode as kPosLocal

; Fetch the global boundaries for the page; we can do this now since

; setting $posmode to kPosLocal set $poshorzpage and $posvertpage

Calculate posBnds.$posmode as kBndsGlobal

; Check if the bottom of the section will fit on the page

If (pThePos.$top+pThePos.$height)>(posBnds.$top+posBnds.$height)

; if it doesn't fit is there room for a new col on current page

If (iCurColumn<iMaxColumns)

Calculate iCurColumn as iCurColumn+1

Else

; put the section at the top of the next page for column one

Do posBnds.$offset(0,posBnds.$height)

Calculate iCurColumn as 1

End If

; now calculate the section’s top position based on posBnds.$top

Calculate pThePos.$top as posBnds.$top

; calculate the section’s left pos based on current column number

Calculate pThePos.$left as
(iCurColumn-1)*$cinst.$labelwidth+iLeftAdjust

Else If not(pThePos.$left)

Calculate pThePos.$left as iLeftAdjust

End If

Do default ;; this prints the Record section

276 Chapter 9—Report Classes

Printing Errors
The print manager reports the following error codes and text. You can setup error handlers
to manage these errors.

1001650 Non fatal print manager error

1001670 Fatal print manager error

1001680 Print manager system error; the code is shown in the error text

1001681 Other OMNIS error reported by print manager

Labels
To print labels in OMNIS you need to create a report class and set up its properties for label
printing. You can create the report class using the standard SQL or OMNIS report wizards,
or you can create an entirely New Report and add the fields yourself. This section uses the
OMNIS Report wizard as the basis for a Customer address label, but the process is the same
for any label report. Alternatively, you can use the ad hoc report tool to create a label
report, described later in this chapter.

To create the basis of your label report

• Create a new report class using the OMNIS Report wizard and include the fields you
want in your label

• Open the report class to modify it

• Delete the header section and any labels the report wizard places on the report class,
but leave the data fields; your report class should look something like the following

Labels 277

To change this report class into a label report you need to change some of its properties, set
the properties of the Record section to position your labels on the printed page, and as a
further enhancement you can set the properties of some of the fields on the report to exclude
empty lines. Note that all measurements use the current units set in the usecms OMNIS
preference.

To set the label properties of a report class

• Click on the background of your report class to view its properties

• Set the islabel property to kTrue

• Set the labelcount property to the number of labels across the page; for example, for
standard 3 x 8 laser labels you set labelcount to 3

• Specify the width of a single label in the labelwidth property; if there are spaces
between your labels, include the space in the label width, that is, the labelwidth is the
distance between one record and next across the sheet of labels

• If you want to print more than one label for each row or record of data set the
repeatfactor property, otherwise leave it set to 1 for a single copy of each label

278 Chapter 9—Report Classes

To specify the distance between each row of labels down the page, you change the
properties of the Record section in your report class.

• Click on the Record section to view its properties

• Set the startmode property to kFromTop, and in the startspacing property enter the
distance between the top of one row of labels and the next going down the label sheet

Excluding Empty Lines
When you print your labels some of the fields may be empty and a blank line is printed.
However you can stop a field from printing and move up all subsequent lines by setting the
nolineifempty property for the field. For example, if your label includes two lines for the
address you can set the nolineifempty property to kTrue for the second address field. In this
case if the second address line is empty for a particular record, the line is not printed and
subsequent fields move up one line. If any address field on your label is likely to be empty
you ought to set its nolineifmpty property.

Labels 279

Using a Calculated Field
Rather than putting two separate fields on your label report for the Firstname and Lastname
data, you can use a single calculated field and the con() function.

To create a calculated field

• Create a field on your report and view its properties

• Leave the dataname property empty, and set the calculated property to kTrue

• Enter the calculation in the text property, something like the following

con(CU_FNAME,’ ‘,CU_LNAME) ;; note space char is in quotes

The con() function concatenates the current values in the CU_FNAME and CU_LNAME
fields and separates them with a single space character.

280 Chapter 9—Report Classes

Using all the features described in this section, your label report should look something like
the following when printed to the screen.

HTML Report Device
The OMNIS Studio Print Manager API has been made public, allowing you to create your
own custom printing devices as external components and place them in the XCOMP folder.
You can show your own custom printing devices in the Print Destination dialog, and use the
printing preferences and notation to control your own devices. The HTML printing device
is an external component and shows what you can do with custom devices. You can use the
HTML report device in exactly the same way as the standard report destinations; there is no
difference between internal and external output devices.

When the HTML external component is loaded in OMNIS, it registers an external output
device with the OMNIS Studio Print Manager and shows the HTML icon in the Report
Destination dialog. To print to the HTML output device you can set it up via the Report
Destination dialog, or access it via the notation using the print device methods.

You can specify the HTML device using the notation as follows.

Calculate $cdevice as kDevHtml

Calculate $cdevice as $devices.Html

You can also set an item reference to the HTML device:

Set reference myDevice to $devices.Html

HTML Report Device 281

The constant kDevHtml is supplied by the HTML component at registration together with
some other constants.

Setting the HTML Device Parameters
The HTML output device has several parameters which affect the overall appearance of the
HTML document generated by the device. You can change some of these parameters in the
Report Destination dialog and the notation, while some can be manipulated by the notation
only.

The HTML device parameters are represented by constants which you can use in the
notation. Some of them correspond to parameters in the Report Destination dialog.

Constant Description

kDevHtmlFileName the pathname of the destination HTML file

kDevHtmlFont1 largest point size which maps to HTML font size 1

kDevHtmlFont2 largest point size which maps to HTML font size 2

kDevHtmlFont3 largest point size which maps to HTML font size 3

kDevHtmlFont4 largest point size which maps to HTML font size 4

282 Chapter 9—Report Classes

Constant Description

kDevHtmlFont5 largest point size which maps to HTML font size 5

kDevHtmlFont6 largest point size which maps to HTML font size 6

kDevHtmlFont7 largest point size which maps to HTML font size 7

kDevHtmlImageBorder whether JPEG images have a single pixel border

kDevHtmlUseRects whether background rectangles are to be used to determine
the background color of the HTML table cell which
intersects the background rectangle

kDevHtmlBackcolor background color of the HTML document

kDevHtmlTextcolor default text color; any black text received from the print
manager will be changed to this color

kDevHtmlLinkcolor color for HTML text or pictures which are HTML links

kDevHtmlVLinkColor color for links which have been visited

kDevHtmlALinkColor color for links which are currently active

kDevHtmlTemplate full path and file name of a template HTML file; it must
already contain the basic framework for an HTML file,
that is

<HTML>
<BODY bgcolor= …etc…>
</BODY>
</HTML>

kDevHtmlTemplateChars the place holder contained within the template file which
marks the point at which the report output will be inserted
into the template, that is, “$$$$” the template file must
contain this text, that is

<HTML>
<BODY bgcolor= …etc…>
<p>$$$$</p>
</BODY>
</HTML>

kDevHtmlScaleFont… an additional single font scale factor; the following
constants are available

kDevHtmScaleFontNone: no scaling
kDevHtmScaleFontVSmall: reduce HTML size by 2
kDevHtmScaleFontSmall: reduce HTML size by 1
kDevHtmScaleFontLarge: increase HTML size by 1
kDevHtmScaleFontVLarge: increase HTML size by 2

HTML Report Device 283

You can get and set the value of the device parameters using the following methods.

– $getparam(param constant)
returns the value of the specified parameter

– $setparam(param constant, value [,param constant, value, …])
sets the value(s) of the specified parameter(s)

For example

Do $devices.Html.$setparam(KDevHtmlFont1,6,KDevHtmlFont2,8)

Do $devices.Html.$getparam(kDevHtmlFileName) Returns MyPath

The value of all device parameters is stored in the OMNIS configuration file.

Sending Text or Data
It is possible to send text or data to some internal and external devices. The HTML device
supports both. You can use the methods $sendtext() and $senddata() to send text and data,
respectively.

When sending text, the HTML output device surrounds the given text with the correct
HTML syntax, that is, it places begin paragraph and end paragraph statements around the
text. You can send text with more than one call to $sendtext(), but still have the text appear
in one paragraph. To do this, specify kFalse for the line feed parameter of the $sendtext()
method. The device buffers the text separately, before adding a single paragraph to the
document when you call $sendtext() with the line feed parameter set to kTrue.

When sending data, the device writes the data directly to the current position in the HTML
file without any modification.

You can send text or data between reports, but not during printing, that is, while a report is
being printed calls to $sendtext() and $senddata() are ignored.

284 Chapter 9—Report Classes

The following method uses $senddata() to send data to an HTML file.

Set reference myDevice to $devices.Html

Calculate $cdevice as myDevice

Do myDevice.$setparam(kDevHtmlFileName,”C:\OMNIS\REPORT.HTM”)

Do myDevice.$open() Returns ok

If ok

Do myDevice.$senddata(myData1)

Set report name Report1

Print report

Do myDevice.$senddata(myData2)

Set report name Report2

Print report

Do myDevice.$senddata(myData3)

Do myDevice.$close()

End If

HTML Report Objects
HTML report objects are special report objects that you can use to insert objects, such as
other HTML documents, pictures, DLLs, or web site addresses, into your HTML reports.
The HTML report objects are part of the HTML printing device and, when the report editor
is the top window, they appear in the Component Store under the External Components
button.

Ad hoc Reports 285

– HTML Picture
standard picture object

– HTML Icon
picture object which uses an icon id for its data

– HTML Text
simple text object, like the standard label object

– HTML Data bound Text
data bound text object, like a standard field; the data comes from an OMNIS variable
or field

The HTML report objects have an $address property which you can set to the address or
location of an HTML document, picture, DLL, or web site, for example,
“results/result1.htm” or “http://www.omnis-software.com/”. The text can contain square
bracket calculations, such as “www.[lvWebName]”.

If the HTML objects are printed to any other device other than the HTML device, they
behave like their equivalent OMNIS field types, a standard picture or text field.

Ad hoc Reports
The ad hoc report plug-in offers you a quick way to generate reports and query your data.
You can create ad hoc reports that access your server or OMNIS database. You can also use
SQL reports with the OMNIS SQL DAM to access an OMNIS data file. The term column is
used in this section to mean both server table columns and OMNIS file class fields.

Ad hoc reports are based on standard OMNIS report classes, hence modifying an ad hoc
report is very similar to modifying a standard report, which is described earlier in this
chapter.

Creating Ad hoc Reports
You access the ad hoc report tool from the Reports menu. You need to install this menu to
create or modify ad hoc reports. You also need to open a session using the SQL Browser, or
an OMNIS data file using the Data File Browser.

To create an ad hoc report

• Open the Tools menu on the main OMNIS menubar and select the Adhoc Reports
option; the Reports menu is installed on the main menubar

• Open the Reports menu and select New

286 Chapter 9—Report Classes

• Select a template and click on Next

If you select the Labels template the next pane in the wizard prompts you to enter details
about your labels. You can set the paper size, label format, margins, and so on, or you can
select a label format from the list of Ready Labels.

Ad hoc Reports 287

For all templates, you next select the columns you want to include on your report.

• Select the data type of your report by clicking on either the OMNIS or SQL data radio
button: the buttons do not appear for SQL sessions

• Open the session or data file name in the list and select the columns you want to include
on your report

You can either select a table or file name to include all the columns, or you can open
individual tables or files and select individual columns. For OMNIS data access you may
need to select the Main file as well.

• When you have selected the columns you need, click on Finish

288 Chapter 9—Report Classes

The Query and field list displays all the columns you included on your report. For each
column you can specify a Title or label, whether or not the column is sorted, totaled, or
visible, a calculation, and a formatting string. You can select a formatting string from the
dropdown list next to the entry field.

At this stage you can print or view the output of your report on screen, but since you haven’t
added any query or filtering yet you will get back all the data.

To view the output of your report

• Click on the Rebuild Output button, or if this is the first query for the current session,
click on the View Output button

The Output screen displays all your data using the layout you selected in the wizard. You
can select data from the output screen by dragging the mouse and selecting Copy from the
Edit menu, or you can use Select All to select all the data in your report and Copy. This
copies your data in tab-delimited format into the clipboard. From the Output screen you can
also print directly to the current printer or export the data to a file using the appropriate
buttons on the toolbar.

To get back to the Query and field list

• Click on the Query list button in the toolbar

Ad hoc Reports 289

If you attempt to close an ad hoc report without saving, you will be prompted to save before
closing.

To save an ad hoc report

• Right-click on the background of your report and select Save

• Name your ad hoc report, including the .ahr file extension

Adding Columns or Fields
When you create an ad hoc report from scratch you select the columns to include on your
report in the wizard, but you can add further columns to your report at any time from the
field list context menu.

To add columns or fields

• Right-click on the field list

• Select the Add Fields option from the context menu

290 Chapter 9—Report Classes

• Select the extra columns you want to include on your report, click on the Add Fields
button, and click on Close when you’re done

For ad hoc reports based on OMNIS data, you can also change the main file from the Add
Fields dialog.

Adding and Editing Sort Fields
Assuming you have included all the columns you need in your report, you may want to sort
the report in a particular order.

To specify a sort field

• Check the Sort check box for the appropriate columns or fields

The order in which you check the Sort check boxes determines the sort level, that is, the
first column you check is the first sort field, the second column you check is the second sort
field, and so on. You can specify up to nine sort fields for a single report.

To edit the current sort fields

• Click on the Edit Sort Fields button in the Query and field list toolbar

Ad hoc Reports 291

Note that you must add sort fields in the Query and field list by checking the appropriate
box, not from the Sort fields dialog. For each sort field, you can select the following
options.

– Descending
when set to kFalse the field is sorted in ascending order, otherwise when kTrue the field
is sorted in descending order

– Upper case
when set to kTrue the data is convert to upper case for the purposes of sorting; not
available for SQL data

– Subtotals
when set to kTrue triggers the printing of a subtotal section when the sort field changes
value; you can specify the number of characters that have to change to trigger the
subtotal

– New page
when set to kTrue triggers a new page when the sort field changes value; you can
specify the number of characters that have to change to trigger a new page

When you rebuild the report, your data is sorted using the specified sort fields in their
correct order. For example, you could sort a Customer file on COUNTRY which is sort
field 1, on STATE/COUNTY which is sort field 2, and TOWN which is sort field 3.

292 Chapter 9—Report Classes

Adding a Query
For each column or field in your report you can specify a query that must be fulfilled if a
particular row of data is to be included in the output.

To add a query to your report

• In the Query and field view, drag a column or field from the field list into the query list
at the bottom of the ad hoc window

or

• Right-click on the column or field in the field list and select Add to Query from the
context menu

Ad hoc Reports 293

The column or field is added to the query list. The Equal to comparison is selected by
default, but you can select a different operator and enter the value or calculation for the
comparison. The following operators are available

– >=
the data in the column or field must be greater than or equal to the specified value

– <=
the data in the column or field must be less than or equal to the specified value

– <>
the data must be not equal to the specified value

– =
the data must be equal to the specified value

– In
the data must be In the specified set of values, for example, to test if the field iColor is
set to one of the values red, blue, or green use the query:
iColor IN 'red','blue','green'; note this is for SQL data only

– Not In
the inverse of the In clause, that is, the data must Not be In the specified set of values;
note this is for SQL data only

– Contains
the data must contain the specified string value

– Begins with
the data must begin with the specified string value

– Null
the data in the column or field must be null, that is, a value has not been entered

– Not Null
the data in the column or field must be not null, that is, a value has been entered

– Like
the data must be Like the specified string, which can include the following wildcards:
_ (underscore) to represent a single character, or % to represent multiple characters

– Not Like
the data must be Not like the specified string, which can include the wildcards
described above

– Between
the data must be within a range or Between the specified values, for example, to select
values between F and G use the query: iField Between 'F','G'; note this is for SQL data
only

294 Chapter 9—Report Classes

– Not Between
the inverse of the Between clause, that is, the data must Not be Between the specified
values; note this is for SQL data only

– Child of
the current record must be a Child of the specified parent file name; OMNIS data only

– Not child of
the current record must Not be a Child of the specified parent file name; OMNIS data
only

– Parent of
the current record must be a Parent of the specified child file; OMNIS data only

– Not Parent of
the current record must Not be a Parent of the specified child file; OMNIS data only

For example if you want to select all the rows or records from a customer database where
the COUNTRY is equal to ‘USA’ you can enter the following query.

Strings must always be quoted, and numeric columns or fields can include numbers or
calculated values including other variable names. Boolean fields take values of YES, 1, NO,
0, '' (empty), or Null. You can enter date and times in the comparison field but its
interpretation depends on the data format of the column or field.

Multi-line Queries and Logic
You can add multiple columns or fields to a query. A multi-line query always assumes the
connecting logic is AND, but you can insert your own logic into the query.

To add logic to your query

• Right-click on the query list at the bottom of the ad hoc window

• Select Insert AND or Insert OR as appropriate from the context menu

You can drag and drop lines in a multi-line query to reorder the query, including the AND
and OR operators. You can also delete a single line or all lines using the query list context
menu. You can group particular lines in a multi-line query by selecting the AND and OR
lines and clicking on the promote and demote buttons marked < and >.

Ad hoc Reports 295

Adding Calculated Fields
You can add calculated fields to the ad hoc report field list, for example, you can
concatenate two values into one report line. The calculations are based on the current values
in the columns taken from the current data row or record.

To add a calculated field

• Right-click on the Query list

• Select the Add Calculated Field option from the context menu

• Type the name of the calculated field, select the type and subtype, and click on the Add
button

• Enter the calculation in the Calculation box in the field list

For example, in a label report you can enter a calculated field called FullName and use the
con() function to concatenate the First name and Last name fields.

• Right-click and select Save from the context menu to save your report

• To see the results, click on the Rebuild Output button

At this stage you may want to change the layout of your report, or add some graphics.
Furthermore if you have added calculated fields to your report you may need to rearrange
the fields on the report.

296 Chapter 9—Report Classes

Modifying your Report
You can change the layout and positioning of the fields on your report at any time by
switching the ad hoc window to modify report mode.

To modify your report

• Click on the Modify Report button in the ad hoc window tool bar

You can add text labels and graphics, and move fields around and change their colors. If
you delete columns or fields from the report they will not appear in the output, but they will
still be included in the field list and are still part of your query.

• When you have made changes to the report modify window you can Right-click and
select Save to save your report

Ad hoc Reports 297

Ad hoc Report Templates
When you create a new ad hoc report you base it on one of the templates stored in the ad
hoc library. However you can change the templates via the Template Browser.

To change a report template

• Select Template Browser from the Reports menu

• Double-click on the template you want to change

You can add graphics and change the font and color properties of any object in a template,
and you can examine the methods behind the report. However you should avoid changing
the structure of the sections and programming in the templates provided. The Templates
menu in the Template Browser lets you create your own templates based on standard report
classes. Your own templates will appear in the Ad hoc Report Wizard when you next create
a new report.

298 Chapter 9—Report Classes

Re-using Ad hoc Reports
Ad hoc reports are saved to disk as small library files with the .ahr file extension. Each file
stores a copy of the report layout and query. You can open an existing ad hoc report file
from the Reports>>Open menu option.

Ad hoc report Notation
The public methods $x_newadhoc and $x_openadhoc are available in the ad hoc report
tool. You can call a public or tool method using the $dotoolmethod() method, available
under the $root.$modes group. $x_newadhoc prompts the user to create a new ad hoc report
by launching the ad hoc report wizard, and $x_openadhoc prompts the user to open an
existing ad hoc report. These methods do not take any parameters as follows

Do $root.$modes.$dotoolmethod(kEnvToolAdhoc,’$x_newadhoc’)

Do $root.$modes.$dotoolmethod(kEnvToolAdhoc,’$x_openadhoc’)

The table selection window by default has a checkbox option to display tables for all users
if the database supports this feature. You can hide and show this option using the
$x_allowanyuseroption() method as follows

Do $root.$modes.$dotoolmethod(kEnvToolAdhoc,
”$x_allowanyuseroption”,[kTrue|kFalse])

Ad hoc Reports 299

Chapter 10—Lists and
Grids

Lists and Grids are types of window field in which you can show all types of data including
multiple columns and rows. OMNIS provides many different type of grid and list field for
you to display list data. For example, in an accounts application you could use a complex
grid field on the order processing window to enter or display the individual items for a
purchase order. In a customer database, you could use a dropdown list to show the
salutation as a short list of preset choices from which the user selects a value. And you can
use a simple list box to show names and phone numbers.

In the Component Store you can choose from many different types of list or grid field,
including, popup lists, dropdown lists, combo boxes, tree lists and string and data grids.
Short single-column lists are suitable for selecting a value from a small number of choices,
while multi-column, multi-row grids are more suited to complex data entry and
manipulation.

Complex grid

Dropdown list

List box

300 Chapter 10—Lists and Grids

The data which is displayed in a list or grid field is taken from a list variable. To create a
list or grid field, you first declare a variable of list data type and then populate it. Usually
this involves writing a method to transfer the data from a database into the list variable.
When you place the list or grid field on a window you make its dataname the name of your
list variable. In this way there is a direct link between the data in the window field and the
list in memory.

List variable in
memory

W indow

List or Grid Field

You can write methods behind the field to respond to user clicks in the list or grid field on
the open window, and you can drag and drop data to and from a list field.

This chapter describes the various types of list and grid fields available in OMNIS. It also
describes how you create and define list variables, and how you change the visual
appearance of grid fields using the Property Manager. The manipulation of lists and
complex grids is described in the List Programming chapter in the OMNIS Programming
manual.

Types of List and Grid Field
The Component Store contains many different types of list and grid field. Each one is suited
to a particular type of data.

� Popup list
displays the currently selected
value: best suits a short list of
commonly used values

� Dropdown list
lets you select a value from the
dropdown list: best suits a
short list of commonly used
words or values

Types of List and Grid Field 301

� Combo box
lets you enter a value into the
field or select a value from the
dropdown list

� List box
can display a number of
columns of data, but has no
column dividers

� Headed List Box
presents the data in tabular
format with button style
column headers; you can
program the list to sort when
you click on a header; the same
type of control as used in the
Browser Details view

� String grid
presents text data in tabular
format and lets you enter text
data into the cells. You can
size the columns by clicking on
the header buttons

� Data grid
similar to a string grid, but
supports most data types

302 Chapter 10—Lists and Grids

� Complex grid
presents data as a series of
columns and rows similar to a
spreadsheet; in runtime the
user can create new rows, enter
data into cells, and size the
columns

� Check list
displays a single column of
data and check boxes which
you can check and uncheck

� Icon Array
presents a number of icons
with text labels either in large
or small icon view; the same
type of control as used in the
Browser and Component Store

� Tree list
presents a hierarchical list of
values; you can expand and
collapse each node to show or
hide the next level; the same
type of control as used in the
Notation Inspector

Before you can create a list or grid field on a window, you must declare and define a list
variable. Then using a method, you make your list variable the current list, define the
columns in the list, and build the list by inserting data, usually by selecting it from your
server or OMNIS database. Finally you create a list or grid field on your window and assign
the list variable to the field.

List Variables 303

The following sections describe how you create a list variable and define the columns for
your list. The remainder of the chapter describes how you create the simpler types of list
box and grid field: the complex list and grid types are described in the
Window Programming chapter in the OMNIS Programming manual.

List Variables
A list variable is a structured data type that can hold multiple columns and rows of data.
You can declare a task, class, instance, local, or parameter variable of list data type. You
can create any number of list variables in your application, limited only by the amount of
memory in your system. A list can hold an unlimited number of lines and can have up to
400 columns. The data type of each column in your list can be any one of the OMNIS data
types including Character, Number, Date, Picture, and List:

Typically, when creating and building a list using OMNIS commands, you

1. Declare a variable in the method editor with the list data type

2. Make this list variable the current list with the Set current list command

3. Define the field names or variables to use as the columns in the list with the Define list
command

4. Build your list, normally from your server or OMNIS database

Creating a List Variable
To create a list variable, open the method editor for the class in which you want to create
the list variable. For example, if you want to create a list or grid field on a window open the
class methods for window class. In the method editor variable pane, create a new variable
and give it a name. Select the List data type.

Typically you then write a method that sets the current list, defines the columns for your list,
and builds the list. This method is best placed in the $construct() method of your window or
placed elsewhere and called from the $construct() method. This ensures the list is built just
before the window opens.

304 Chapter 10—Lists and Grids

Setting the Current List
A number of the commands make an assumption that the list you are referencing is the
current list. To make your list the current list you use the Set current list command. For
example, using the list variable SALES_LST your method would start

Set current list SALES_LST

Defining Your List
Next you specify the column structure for your list using the Define list command. This
command takes a list of variable or data names as parameters.

Define list { NAME, SALES, EXPENSES }

This command means that the variables NAME, SALES, EXPENSES will be included in
your list. Their names and data type will define the names and data type of each column in
your list. The variables used in your list can be from anywhere in your library, including
being defined as variables in the class containing your list.

You can include all the columns from a file class in your list by using just the name of the
file class in the Define list command. You can also define a list from a schema, query, or
table class to directly map the columns of your list to the columns in your server database.
In this case you can use the Define list from SQL class command which is discussed in the
List Programming chapter in the OMNIS Programming manual.

Building Your list
To populate your list variable with data you need to build the list using one of the following
commands.

– Build list from select table
builds a list from a server table

– Build list from file
builds a list from the main file class in an OMNIS data file using the specified indexed
field

– Add line to list { (value|field1, value|field2,...) }
adds a new line to the current list using the specified values, or the current values of the
specified fields

The complete method for defining and building a list from an OMNIS data file could be

Set current list SALES_LST

Define list { NAME, SALES, EXPENSES }

Build list from file on NAME

Creating List and Grid Fields 305

Or if you want to build a static list using Add line to list your method could be

Set current list SALES_LST

Define list { NAME, SALES, EXPENSES }

Add line to list {('Fred',285,120)}

Add line to list {('Sam',370,150)}

Add line to list {('George',405,340)}

Add line to list {('Niles',100,500)}

Creating List and Grid Fields
You can create many different types of list and grid fields. Some types are most suited to
single columns of data while others can contain multiple columns and rows and are best for
complex data entry. In the introduction to this chapter you have seen the different types of
grid available in OMNIS. The following sections describe how you create some types of list
and grid field, including a single-column dropdown list with default lines, a list box with
two columns, and a complex grid with many columns and rows.

Dropdown lists
The simplest type of list or grid field contains a single column of data. All types of list or
grid field can contain a single column, but some types such as list boxes, dropdown lists,
combo boxes, or check box lists are best suited for displaying short single columns of data.
The data inside a short list or grid field can come from your database loaded into a list
variable, or you can include a number of lines that always appear in the list by default.

To create a dropdown list with default lines

• Drag a Dropdown List from the Component Store onto your window

• Bring the Property Manager to the front using F6/Cmnd-6

• Click on the defaultlines property and click on the entry field

A small entry box will appear.

• Type a list of values you want to appear in your dropdown list

306 Chapter 10—Lists and Grids

• Click on Accept Lines

• Open your window and click on the list

When you click on the dropdown list the default lines will appear. You can add default lines
for dropdown, combo box, and tree list fields.

List boxes
If you want to include two or more columns in your list you have to get your data from a list
variable, since the defaultlines property can handle single columns only. When you create a
list field you have to specify the list variable associated with the field.

To create a list box

• Drag a List box from the Component Store onto your window

• Bring the Property Manager to the front using F6/Cmnd-6

• Enter the name of your list variable in the dataname property for the list box field

• Enter the calculation in the format

Creating List and Grid Fields 307

jst(column1,width,column2,width,...)

The calculation for a list box field specifies the column(s) to appear in the grid and the
width of each column as the number characters, using the jst() function. You can include in
your list field any number of columns from your list variable, and in any order.

The jst() function
The calculation for your list field can use the jst() function to set the column names and
their widths. For example, you could enter

jst(NAME,10,SALES,5)

This calculation puts the NAME variable in a column 10 characters wide and the SALES
variable in a column 5 characters wide.

You can include the X modifier to truncate the data in a particular column. For example

jst(COMPANY, '20X', NAME, '22X')

This calculation puts the COMPANY variable in the first column and truncates any data
that is longer than 20 characters. It then puts the NAME variable in the second column and
truncates any data that is longer than 22 characters.

You can right justify a column, perhaps one containing numbers. For example

jst(NAME, ‘20X’, TEL, -18)

This expression left justifies the NAME variable in the first column which is 20 characters
wide, and right justifies the value of the TEL variable in a column 18 characters wide.

Note that for single-column lists you need only include a single field or variable name in the
calculation property, that is, you don’t need to use the jst() function. If you omit the
calculation altogether, no data will appear in your field.

308 Chapter 10—Lists and Grids

The default properties of a list box are set, but you can change any of these in the Property
Manager.

You may need to adjust the column widths or the text properties. For example, you should
use a non-proportional font such as Courier if you are using two or more columns in a list
box. This ensures the columns line up across the list.

When you select a line in a list box, this normally deselects all other lines, but with the
multipleselect property set, you can select any number of lines. Dragging or shift-clicking
selects contiguous lines, while Ctrl/Cmnd-clicking selects non-contiguous lines. You can
deselect individual lines with Ctrl/Cmnd-click or all lines by clicking in the white space at
the end of the list.

If you open your window and the list or grid field is empty, this probably means that either
the list variable behind the field is empty, or you have not entered the dataname or
calculation property correctly.

Creating List and Grid Fields 309

Complex Grids
A complex grid is a field that contains other fields and displays data from a list variable.
You define the columns for a complex grid by dragging fields from the component store
into the row section of the grid field. The fields in a complex grid should correspond to
some or all of the columns in the list variable supplying the grid data. Complex grids also
have three header sections which are visible by default: the main header, the horizontal
header for column headings, and the vertical header for row headings. You can add text
and graphics to any of the header sections. Any background object you put in the row
section of a grid, such as a line or graphics, will be repeated for each row of the grid.

To create a complex grid field

• Drag a Complex Grid from the Component Store onto the window

• Bring the Property Manager to the front using F6/Cmnd-6

• Enter the name of your list variable as the dataname

• Click on the Appearance tab

Main header
Horizontal header
(column headings)

Row sectionVertical header

310 Chapter 10—Lists and Grids

The majority of the grid properties hide or show parts of the grid, including the various
headers. For example, you can control the style, color, and line style of the main header
using the showheader, headerlinestyle, headerborder, and headerfillcolor properties.
You can set the style of the row border, and the number of columns to appear in the grid
field.

• Click on the columns property and set it to the number of columns you want in your
grid field

• For each column in your grid, drag an Entry field from the Component Store into the
appropriate column in the row section of your grid field; release the field when the cell
border highlights

Creating List and Grid Fields 311

• With the column field selected, set its dataname to the name of a column in your list
variable behind the grid field

• Do this for each column in your grid field

You can also set the font, style, alignment and color for each column field. In a similar way,
you can add a text label to each column header. To do this

• Drag a Text object from the Component Store into each column heading and the main
header section; release the field when the header border highlights

• With the object selected, type the header text in the text property

• For each text object you can set the font, style, alignment, and color

For a three-column grid, your field might look something like this.

You can make a complex grid enterable, so the user can enter data into each cell, and
extendable, so that tabbing out of the last cell creates a new row. For complex grids and
some other types of list and grid field you can make the field display multiple selected lines
by enabling the multipleselect property. These properties are on the Action tab in the
Property Manager. In general, the tabbing order of the fields inside a table starts from the
header, then to the horizontal and vertical headers, and finally to the rows. This overrides
the field order of the normal field numbers.

For details on programming a complex grid field refer to the Windows Programming
chapter in the OMNIS Programming manual.

312 Chapter 10—Lists and Grids

Tree Lists
The tree list displays a hierarchical list which you can expand and collapse to show or hide
the different levels. The Notation Inspector uses such a list to display the notation tree. A
tree list can either display a list variable or you can enter a default list.

To create a tree list with default lines

• Drag a Tree List from the Component Store onto the window

• Bring the Property Manager to the front using F6/Cmnd-6

• Click on the Appearance tab

Several properties control the appearance of a tree list. When the shownodeicons property
is set (kTrue), you can select the defaultnodeicon and the expand/collapse node in
expandcollapseicon. Also you can position the node icons using nodeiconspos either on
the node, on the left, or as set by the system. To enter a default list

Creating List and Grid Fields 313

• Click on the treedefaultlines property on the General Tab and click on the entry field

The default lines box lets you enter a tree by adding root and child nodes. The tree list
contains a number of options, including populating a tree list from a list variable, and these
are described in the List Programming chapter in the OMNIS Programming manual.

Combo Boxes
A combo box is a combination of dropdown list and an entry field. When viewed on an
open window, you can choose an item from the list or type anything you want into the entry
box. You might therefore put the salutations Mr, Mrs, Ms, Miss in the list, and leave the
user free to enter Dr when needed. You can open a combo by clicking on the drop arrow, or
tabbing to the field and pressing Alt plus the down arrow key; pressing just the down arrow
key cycles through the choices in the list. Selecting a line with the mouse or pressing the
Tab or Esc key closes the list. When you create a combo box you must specify the name of
the data field in the dataname property and the name of your list variable in the listname
property.

To create a single-column combo box

• Drag a Combo Box from the Component Store onto the window

• Bring the Property Manager to the front using F6/Cmnd-6

• Enter the dataname for the entry field part of the combo box, that is, the column name
of the field or variable in your list

• Enter the name of your list variable in listname

314 Chapter 10—Lists and Grids

• Enter the calculation for the list; this can be any calculation to format the list for
display

When using data from a list you should leave the defaultlines property empty. Some of the
properties of a combo box refer to the entry field part. On the Appearance tab, you can
specify the number of lines displayed when your combo box drops down by setting the
listheight property.

Popup Lists
Popup lists are most suited to short single-column lists from
which the user can select a single choice. The user can click on
the field to drop down the list. When you create a popup list you
need to enter the name of your list variable in the dataname
property for the field. Enter the name of the variable in your list
column in the calculation property. Use the constant
kDefaultBorder for the effect property to ensure the list has the
default border style for the current operating system.

To create a popup list

• Drag a Popup List from the Component Store onto your window

• Bring the Property Manager to the front using F6/Cmnd-6

• Enter the name of your list variable in dataname

• Enter the calculation for the list, or a variable name for a single column list

Getting Data from a List or Grid Field 315

Check Lists
Check lists display a check box against each row in the list
field. The user can select a line by checking the check box for a
line. They are most suited to single columns of data or values in
which the user can check multiple values or choices. If a check
box is checked the corresponding line in the underlying list
variable is selected.

To create a check list

• Drag a Check List from the Component Store onto your window

• Bring the Property Manager to the front using F6/Cmnd-6

• Enter the name of your list variable in dataname

• Enter the calculation for the list, or a variable name for a single column list

Getting Data from a List or Grid Field
You can use lists and grids to display information, but typically you want the user to choose
a particular line in a field and find out which line they have selected. Using a method behind
the field you can load the data in the selected line, find out the row number of the selected
line, or for complex grids find out the data in a particular cell.

To create a list field method

• Right-click on the grid field in the design window

• Choose Field Methods from the context menu

or

316 Chapter 10—Lists and Grids

• Double click on the grid field

• Select the $event() method

When you open the method editor you get the event handler for the field

On evClick ;; Event Parameters - pRow (Itemreference)

You can enter any commands you want in this method to respond to clicks and you can add
code to deal with other events, such as double-clicks. If the list columns are defined from
file class or other declared variables, you can transfer the current values of the fields or
variables in the selected line to the CRB using the Load from list command. The method
behind your list field might be

On evClick

Load from list

; now do something with the values

See the Methods and Notation and Events and Messages chapters in the OMNIS
Programming manual for more details.

Lists and Local Fields
You can place a series of local fields on your window that correspond to the columns in
your list variable, so that when the user clicks on the list or grid the current list values are
loaded into these fields. In this case the dataname of each local field should be set to the
name of a column in the list variable, and their local property should be set. The field
numbers of the local fields must immediately follow the grid field. To set the field order of
a field change its order property.

When you click on a line in the grid the local fields will update automatically.

Searching in List and Grid Fields 317

Searching in List and Grid Fields
All OMNIS list and grid fields have a built-in search facility. At runtime, you can click on a
list or grid field and type the first few characters of the text you want to find, and OMNIS
will try to find a line containing the text. For example, you can tab to a list field and type
“b” to find the first line beginning with “b”. You can use an asterisk “*” to represent any
number of arbitrary characters, so “*s” searches for the first line that contains the character
“s”, and the string “s*e*n” finds the line starting with “s” and containing “e” and “n”.
OMNIS beeps if it cannot find a matching line. You can use the + and - keys to find the next
or previous line in the grid that matches the string.

For a complex grid you can specify which column the search applies to. To do this, enter
the name of the column in the calculation box when you create the grid field. For this to
work in a grid field you must turn off its enterable property. Otherwise when you type on a
line your search the value will be entered into the grid.

318 Chapter 11—Internet Classes

Chapter 11—Internet
Classes

OMNIS provides a number of powerful Internet-ready object and code classes, and various
easy-to-use window wizards that let you fully integrate Internet services into your OMNIS
applications. The Net classes and wizards let you create windows to send and receive E-
mail, download files from a remote server using FTP, and access information and services
on an HTTP server via the Web.

FTP

E-mail

HTTP
Client/Server Net

Classes TCP
Client/Server

The OMNIS object and code classes, and the window wizards are available in the
Component Store under the Net Classes button. You can copy the object and code classes to
your own applications and use their methods, or you can use the window wizards to create
ready-made windows for your application. When you drag one of the window wizards from
the Component Store onto your library the object and code classes it needs are copied
across to your library automatically.

Searching in List and Grid Fields 319

For general information about integrating Internet services into your OMNIS applications,
and using object classes, refer to the Internet Programming and Object Oriented
Programming chapters in the OMNIS Programming manual.

To view the Net window wizards

• Open your library and press F3/Cmnd-3 to open the Component Store

• Scroll the toolbar at the top of the Component Store and click on the Net Classes button

The Net Classes group in the Component Store contains the Internet-enabled window
wizards and a range of OMNIS object classes that form the OMNIS Net objects API. The
Net window wizards include

Net Wizard
lets you create any of the Net windows including an FTP window, HTTP
client or server window, TCP client or server window, or an E-Mail window

320 Chapter 11—Internet Classes

FTP Wizard
lets you create a window for accessing files on a remote FTP server

HTTP Wizard
lets you create an HTTP client or server window

TCP Wizard
lets you create a TCP client or server window

E-Mail Wizard
lets you create a window to send and receive e-mail in your application

To create a Net-enabled window

• Drag the Net Wizard component onto your library

• Name the window class, press Return, and at the introductory window press Next

• Choose the functionality you require and click on Next

Searching in List and Grid Fields 321

For the TCP and HTTP windows

• Choose either Client or Server network functionality

For the FTP and E-mail windows you can enter your own details which become the defaults
for that particular window. You can create another copy of the same type of window with
different defaults, for example, you can create an e-mail window for each person in your
department.

For the FTP window you can

• Enter your Username, Password, and Site address, or leave the fields blank

For the E-mail window you can

• Enter your E-mail address, Password, SMTP server name, and POP3 server name, or
leave the fields blank

At any stage you can click on the Previous button to go back and change your details, or
click on Cancel to halt the wizard process and delete the window from your library.

• When you have entered all your details click on the Create button

OMNIS creates your window and copies across any OMNIS object classes required for the
window. The new window is opened in design mode ready for you to modify. Alternatively
you can press Ctrl/Cmnd-T to open or test your window now. The name and address details
you entered in the wizard will be copied to your window automatically.

Net Objects API
You can use the OMNIS object and code classes in your application to create your own
windows that provide various Internet services. The Net object and code classes, located
under the Net Classes group in the Component Store, form the OMNIS Net objects API.
They include

oEMail
object class that provides methods for e-mail services

oFTP and oFTPInherited
object classes that provide methods for FTP services

oHTTP
object class that provides methods for client and server HTTP
services

322 Chapter 11—Internet Classes

oRealSocket and oSocket
object classes that provide methods for manipulating TCP/IP
sockets

oSpy
object class that maintains a list of sockets

oServices
code class that contains general purpose methods for
manipulating sockets

You can call a method in an object class using the notation VarName.$MethodName(),
where VarName is an instance variable based on the object class and $MethodName() is
any method defined in the object class. The windows created using the window wizards
contain instance variables based on the Net object classes.

To view the variables and methods for a Net object class

• Copy the Net object class to your library from the Component Store

• Double-click on the object class in the Browser

or

• Right-click on the object class and select the Methods option from the context menu

You can print a list of the variables and methods in any class, including the Net object
classes, using the Print Method option in the File menu. You can print the selected method
only or, if you click in the white space in the method list to deselect the current method, you
can print all the methods for the current class. The report is sent to the current report
destination (File>>Print Destination option) and lists the parameters, variables, and code for
each method, or for all methods in the class.

To print the methods for a Net object class

• Set the print destination using the File>>Print Destination menu option on the main
menu bar

• Select File>>Print All Methods (or Print Selected Method) from the main menu bar

Searching in List and Grid Fields 323

For example, the following screenshot shows the $setOutBuffer() method contained in the
oEMail object class. The print out shows you the method’s code and its parameters,
including variable types and lengths.

324 Chapter 11—Internet Classes

The following section describes the Net object classes and summarizes their methods. Some
of the Net classes contain empty methods or placeholders for further development; these
methods are not listed below.

E-Mail Object Class
The oEMail object class uses the SMTP and POP3 protocols and lets you send and receive
e-mail. You can log onto your SMTP mail server, handle the In and Out buffers, and query
the mail server for incoming mail. The object class has the following methods.

Method Description

$logon(pOutServer,pOutFrom,pOutFromName,
pInServer,pInUsername,pInPassword)

logs on to your mail server

$setOutBuffer(pToAddressList,pSubject,pBody,
pCCAddressList,pBCCAddressList,
pStatusCall,pPriority,)

adds e-mail message to the out-buffer

$clearOutBuffer() clears the out-buffer

$sendMessage(pToAddresslist,pSubject,pBody,
pCCAddresslist,pBCCAddresslist,
pStatusCall,pPriority)

sends internet e-mail message via a
SMTP server

$sendAllMessages() sends all e-mail messages held in the
out-buffer via a SMTP server

$setInBuffer(pReturnPath,pDate,pPriority,
pFrom,pSubject,pBody)

adds e-mail message to the in-buffer

$clearInBuffer() clears the in-buffer

$receive(pDelete,pStatus) receives e-mail messages

$stat() finds out how many e-mail messages
are waiting to be retrieved

$split(pMessage,pReturnPath,pDate,pPriority,
pFrom,pSubject,pBody)

splits the header information from the
body of the e-mail message

$logoff() logs off and clears the buffers

Searching in List and Grid Fields 325

FTP Object Classes
The FTP object classes give you all the methods required to query and access files on a
remote FTP server. You can navigate the remote server and display its full directory
structure. You can download Ascii text and Binary files and query their read/write and
ownership status. The oFTP object class has the following methods.

Method Description

$construct() sets up the Socket

$connect(pServerAddress,pUsername,pPassword) establishes an ftp connection

$disconnect() disconnects the server

$getWorkingDirectory() finds the present working directory

$setWorkingDirectory(pNewDir) clears the current directory and
establishes the specified directory

$rename(pOldName,pNewName) renames the file or directory

$getFileProtection(pDirList,pDirPath) returns the full directory list
including protection rights

$setFileProtection(pFileName,pMode) sets the protection rights for the
specified file

$getLastStatus() finds and returns the last ftp error

$setFileMode(pFileMode) sets the file mode to ascii text
(kFalse), or binary (kTrue)

$getDirectoryList(pDirList,pDirPath,pMode) returns directory list

$getFile(pRemoteFile,pLocalFile,pLocalBinary) returns the specified file

The oFTPInherited object class inherits all the methods from the oFTP object class and has
the following methods of its own.

Method Description

$reconcileDirectoryList(pFullList) tidies the directory list

$parseDirectoryList(pDirList,pParsedDirList) parses the directory list

$parsePrivileges(pFilePrivs,pParsedFilePrivs) finds what priveleges have been set,
returns booleans

$stripSeparator(pListIn) strips excess separators

326 Chapter 11—Internet Classes

HTTP Object Class
The oHTTP object class lets you access the World Wide Web, examine web pages, and
process files on an HTTP server. It has the following methods.

Method Description

$get(pHostname,pURI,pCGIList,pPort) connects to the specified server

$header(pHeaderList) sends the specified HTTP header

$page(pURL) reads the specified HTML page

$parse(pMessage,pHeaderList,pMethod,
pHTTPVersion,pURL,pCGIList)

parses header info into an OMNIS list

$post(pHostname,pURI,pCGIList,
pHeaderList,pPort)

submits a cgi request to a web server

$server(pPort,pConnectSocket) initializes a server

$splitHTML(pMessage) parses the html from a web page into an
OMNIS list

$splitURL(pURL,pHostname,pURI) splits URL into Hostname and URI

Searching in List and Grid Fields 327

TCP/IP Object Classes
The Socket object classes let you manipulate TCP/IP sockets. You can open sockets, attach
a socket to a specified port, and send and receive messages via a socket. The oRealSocket
object class inherits all the methods from the oSocket object class and has the following
methods of its own.

Method Description

$socket(pSocketNum,%0) sets the current socket or creates a new one

$bind(pPort) binds the current socket to the specified local port

$listen() puts the current socket into Listen mode awaiting
requests

$accept(pConnectSocket) accepts the first connection for the socket

$connect(pServer,pService) opens a new socket to a service or port on the specified
server or IP address

$send(pMessage) sends a message on a socket

$receive() receives a message on a socket

$close() closes and releases a socket

$getRemoteAddress() returns the IP address of the server for the current
socket

$setBlocking(pBlocking) makes a socket blocking or non-blocking

$SetChunkSize(pChunkLength) sets the chunk size

The oSocket object class has the following methods.

Method Description

$send() sends a message

$receive() receives a message

$getSocketNumber() returns the socket number

$getPortNumber() returns the port number

$getLastError() returns an error number

$getBlocking() returns the Blocking status

$getSpyList() returns a list of sockets

$setLogging(pLogging) allows the switching of logging on/off

328 Chapter 11—Internet Classes

The oSpy object class maintains a list of sockets, and has the following methods.

Method Description

$construct() builds a list of sockets

$spySocket(pSocket,pOperation,pBuffer) adds a socket to the list

$returnSpyList() returns a list of sockets

Using the Net Object Classes
The best way to find out how to use the Net object classes is to look at the windows created
via the Net window wizards. For example, take a look at the FTP window which uses the
oFTP and oFTPInherited object classes. The FTP window contains an instance variable
called iFTPObject based on the object class oFTPInherited, which is itself a subclass of the
oFTP object class. You can use the methods in the object class or one of its superclasses.
For example, the UpOneLevel method in the FTP window uses the $setWorkingDirectory
and $getWorkingDirectory. Here is the code for the UpOneLevel method; note the
iFTPObject variable.

Searching in List and Grid Fields 329

Chapter 12—Accessing
Your Database

The SQL Browser lets you access and maintain your proprietary databases such as Oracle,
Sybase and Informix, in addition to accessing OMNIS data files using OMNIS SQL. This
chapter provides an overview of how you connect to your server database and create a SQL
form to view and update your data. It assumes you are familiar with standard relational
database terminology, including ANSI SQL.

OMNIS Studio includes a separate Data Access Module (DAM) to connect to each server
database supported in OMNIS. The DAMs are either specific to a particular DBMS or
database technology, or to middleware that lets you connect to any of a large number of
different databases and file servers. Specifically, OMNIS provides DAMs for direct
connection to Informix, Oracle, Sybase, and DB2 Universal Database, and middleware
DAMs for ODBC, and EDA.

OMNIS Studio provides three SQL classes that let you access your remote server database:
these are schema classes, query classes, and table classes. The schema and query classes let
you model the data structure of your server database, while table classes provide the
interface and methods that let you manipulate your data via OMNIS list and row variables.
You can define an OMNIS list based on any of the SQL class types and use the SQL
methods to manipulate your server data via the list.

330 Chapter 12—Accessing Your Database

Connecting to Your Database
To connect to your server database in OMNIS Studio you need the appropriate client and
networking software for your chosen server database and operating system, available from
the various database and clientware vendors.

Having set up your networking and client software, you can start OMNIS and logon to your
database using the SQL Browser. When you connect to your server database in OMNIS you
create a session.

To access your database

• Start OMNIS and open the SQL Browser from the Tools menu; note that the SQL
Browser is empty until you open a session

• In the SQL Browser, select Modify Session from the Session menu

Each icon in the Session Manager is a template that specifies the logon details for a
particular database session. You can create a new session, or copy an existing one and
modify it, but in most cases you can edit the templates provided.

• In the Session Manager double-click on the session appropriate to your server database

Connecting to Your Database 331

• In the Modify Session window edit the details for the session, including the
database version, host name, database name, user name, and password

You may not need to supply all of this information for your particular database. For
example, for ODBC and EDA you need to supply the database vendor’s name and version,
but this is not necessary for the direct connections.

• When your session details are complete click on OK

• Close the Session Manager

• In the SQL Browser, select Open from the Session menu and choose your session name
from the submenu

332 Chapter 12—Accessing Your Database

To view the objects in your database

• Double-click on your open session in the SQL Browser

For example, if you access an Oracle database you may see something like the following.

To view the tables in your database

• Double-click on the Tables group in the SQL Browser

Enabling Your Client Application 333

Enabling Your Client Application
Having logged on to your database using the SQL Browser, next you need to create the
appropriate OMNIS classes in your library to enable data access between your server
database and OMNIS client application. You can do this quickly and easily using drag and
drop in the SQL Browser.

To enable your client application

• Open your library in the standard IDE Browser, or create a new one

• Assuming you are logged on to your database, display the tables in your database in the
SQL Browser, as described in the previous section

• Drag the appropriate server table from the SQL Browser onto your library in the
standard IDE Browser

334 Chapter 12—Accessing Your Database

OMNIS adds a schema class with the same name as your server table to your library, and
displays it in the IDE Browser. OMNIS may also add a new table class which references the
new schema class. This depends on a preference which you can set via the SQL Browser
Tools>>Options menu item.

Creating SQL Forms
To view and edit the contents of your database you can create a window or SQL form in
your client application, based on the schema class(es) you created using the SQL Browser.
You can do this using the form wizards in the Component Store. Using the Window or
Form wizards is described in more detail in the Window Classes chapter earlier in this
manual.

To create a SQL form

• Open the Component Store by pressing F3/Cmnd-3 and click on the Window Classes
button in the toolbar

• Drag the SQL Form Wizard from the Component Store onto your library in the
standard IDE Browser

• Name the new window class and press Return, or click in the Browser

• In the wizard dialog choose the type of form, either One field per column, Display
Grid, Enterable Grid, or Parent/Child Window, then click on Next

• Select the database columns you want to include on your form, or check a table name to
include all columns; for the Parent/Child window you need to select the parent and
child columns

• When you have specified the columns for your form, click on the Next button

• Select a session, or leave all the sessions unchecked to use the default session, then
click on Create

OMNIS creates and opens the new SQL form ready for you to modify or open to view your
data.

To open your SQL form

• Press Ctrl/Cmnd-T, or Right-click on the window and select Open Window from the
context menu

Printing Database Information 335

Depending on the type of form you choose you can insert data into your database using the
Insert button, or you can next through your data using the Next button. You can modify this
window or add further methods for SQL data access, which is covered in the OMNIS
Programming manual.

Printing Database Information
You can print information for a list of objects in your database. The information includes
the object name, type, owner, and schema (where applicable for the database). Similarly,
you can print groups of objects in your database, such as the Tables or Views group, as well
as individual tables and views.

To print an object list for your database

• Click on the database and select Session>>Print Database in the SQL Browser menu
bar

or

• Right-click on the database and select Print Database from its context menu

336 Chapter 12—Accessing Your Database

The criteria for the sort are shown in the dialog. For example, if you click on Type and
Name, the object list is sorted on Type then by Name.

To print a group of objects in your database

• Open your database in the SQL Browser and display the object groups, such as Tables,
Views, Synonyms, Stored Procedures

• Right-click on the object group and select Print Objects from its context menu

To print an object in your database

• Double-click on the object group, such as Tables or Views

• Right-click on the object and select Print Object from its context menu

Viewing and Inserting Data
The SQL Browser Object menu lets interact directly with your server database. You can
view and insert data into the current table without creating any SQL classes or SQL forms in
your library.

To view the data for a table

• Click on the table and select Show Data from the Object menu

or

• Right-click on the table and select Show Data from the context menu

The Show Data option creates a Select statement for the current table and sends it to your
server automatically via the Interactive SQL tool. The results of the Select are displayed in
the lower pane of the ISQL tool.

Data Access Wizards 337

To insert data for a table

• Click on the table and select Insert Data from the Object menu

or

• Right-click on the table and select Insert Data from the context menu

The SQL Browser creates a window containing an entry field for each column in your table.
The window lets you insert a single row of data into your database.

Data Access Wizards
The Component Store contains a number of Wizards to help create database connections.
The database wizards are under the Object Classes pane in the Component Store.

Session Wizard
The Session Wizard lets you create an object class based on a specified session in the SQL
browser. The object class created in the wizard contains methods that let you logon and
browse your database. The wizard also creates a logon window that provides an interface to
the object class, and saves you having to create your own logon window. The wizard lists
only those sessions that are correctly set up in the SQL Browser, that is, the wizard will not
list any session templates to which you have not added full logon details such hostname and
password.

To create a session object

• Open your library in the standard IDE Browser

338 Chapter 12—Accessing Your Database

• Open the Component Store by pressing F3/Cmnd-3

• Scroll the Component Store toolbar and click on the Object Classes button

• Drag the Session Wizard onto your library in the IDE Browser

• Name the new object class and press Return, or click in the Browser

• Select a session from those available

• Check or uncheck the Create logon window button as appropriate

• Finally click on the Create button

The new object class is added to your library, together with the Logon window if you
elected to create one, its name being your session name prefixed with the letter w. You can
examine the object class in the Interface Manager.

Data Access Wizards 339

To examine the session object

• Right-click on the object class and select Interface Manager from its context menu

To use the session object class in your application, for example in your own logon window,
you need to create a variable based on the object class. You can call any of its methods
using the syntax ObjectVarName.$methodname. Alternatively you may have created a
logon window using the Session Wizard, in which case all the necessary code is written for
you. You can either use the logon window as it is, or modify it for your purposes.

340 Chapter 12—Accessing Your Database

The logon window created using the Session Wizard contains Logon and Logoff buttons,
and Username and Password entry fields. The second pane lets you browse the tables and
views on your database.

You can examine the logon window in design mode to see how the object class is used. The
window contains an instance variable called iSession which is based on the object class you
created in the Session Wizard. To implement the Logon button, for example, you need only
execute the method Do iSession.$logon() to log on to your database.

The object pane contains a set of wizards, one for each of the DAMs in OMNIS. These are
all derived from a basic object class called oDAM, which is also in the Component Store,
and provide the underlying functionality for you to create connections to your database. The
Example Browser, accessed from the Tools>>Example Browser menu item, shows how you
can use the data access wizards.

General Troubleshooting 341

General Troubleshooting
This section gives you a few tips regarding general troubleshooting. For more detailed or
server-specific hints and tips, refer to the Server Specific Programming chapter in the
OMNIS Programming manual.

Many problems with logging on and accessing your database are caused by incorrect
installation or configuration of either the server, network, or client software. See your
DBMS and network installation instructions for guidelines and problem solving. If you are
having trouble getting connected, you probably need the help and advice of your IS
department and/or database administrator.

If possible, you (or your friendly database administrator) should try to connect to the server
from your machine using another DBMS tool to make sure the client software, network
connections, and server are all functioning, before you try to connect via OMNIS. Having
established your server connection, logging on via OMNIS is easy!

In addition, you could check the following.

– Check the DAM is installed in the EXTERNAL folder under the main OMNIS folder.
Furthermore, make sure there is a DAM for the server you want to access, and check it
is available for the operating system you are currently using.

– Go back to the SQL Browser and check the logon parameters in your session template,
including the name of the DAM (it should include the D prefix), also check the
database version, host name, user name, and password

– If you get specific server or database errors, look them up in your DBMS manual; this
will usually give you a clue about where to look for the problem

342 Chapter 13—Library Tools

Chapter 13—Library Tools
OMNIS provides a number of tools for managing and maintaining libraries, and for
changing the OMNIS design environment itself. For example, you can change the default
classes available in the Component Store in OMNIS, you can add your own icons to
OMNIS, and you can import and export data to and from your application. This chapter
describes

– Component Library
lets you edit the classes and templates in the Component Store

– Welcome Library
lets you create a library which introduces your application at Startup

– Icon Editor
lets you add your own icons to the OMNIS icon data file

– Importing and Exporting data
lets you import data into an OMNIS list, or export OMNIS data to a file

– Library tools
that let you check and retokenize your libraries, and make libraries private

– Passwords and Security
lets you add passwords and security to your library

– Localization
lets you translate your libraries and OMNIS itself into another language for deploying
in international markets or enterprises

Component Library 343

Component Library
If you have started to create an application you will have used the Component Store already
to create classes and other components. The Component Store contains class templates and
wizards, window and report fields, graphics, and external components. This section
describes how you can change the contents of the Component Store by modifying the
Component Library, the OMNIS library that populates the Component Store.

To modify the Component Library you must open and close it from the Component Store
itself. You cannot open it via the Browser as you would a normal library. Unless you want
to copy classes from another library to the Component Library, it is recommended that you
close all other libraries before you edit the Component Library. You should also make a
backup copy of the Component Library before you change it. The Component Library is
called COMPS.LBS and is found in the STUDIO folder under the main OMNIS folder.

If you have upgraded from an earlier version of OMNIS Studio and you have added your
own components to the Component Library, you will need to add these components to the
new Component Library supplied with the current version of OMNIS Studio. You will find
a library called COMPCOPY.LBS in the CONVERT folder which lets you copy
components from an old version of COMPS.LBS to a newer version. Save your old copy of
the Component Library, somewhere other than in the Studio folder, open
COMPCOPY.LBS, and follow the instructions. Note that COMPCOPY.LBS will NOT copy
changes you have made to the classes supplied by OMNIS Software in the Component
Library. It only copies new classes that you have added to COMPS.LBS.

To open the Component Library

• Open the Component Store, or bring it to the top by pressing F3/Cmnd-3

• Select View>>Show Component Library In Browser from the Component Store menu
bar, or Right-click on the Component Store and select the same option

344 Chapter 13—Library Tools

The contents of the Component Library is shown in the Browser. You can switch the
Browser to Details view and click on one of the column headings to show the different types
of component either by Name or Type. You can hide and show specific types of class in the
Component Library using the Browser Options (press F7/Cmnd-7).

Modifying Classes and Fields
You can view and modify the classes in the Component Library as you would standard
classes in your own libraries. You can also create classes in another library and copy them
to the Component Library. The Component Library contains a number of default classes,
either class templates, wizards or particular classes containing fields and other objects.

The names of some of the classes in the Component Library are used in the Component
Store toolbar for the different groups of objects, while other class names have a special

Component Library 345

function. Classes named “New <classtype>“ are the default templates for all new classes
you create in your own libraries. Those that begin with an underscore “_” contain fields and
other components for specific class types, such as window fields and report objects. Any
other classes in the Component Library, such as the class called SQL Form Wizard, are the
wizards and templates that appear under the different class buttons in the Component Store.
Class names that begin with “?” are invisible in the Component Store and are used by the
wizards.

Any changes you make to the classes in the Component Library are reflected in the
Component Store when you close the Component Library.

To modify a class in the Component Library

• Double-click on the class in the Browser

or

• Right-click on the class and select Modify from its context menu

For example, to modify the default window class, open the class called “New Window”.

You can change the properties of this window class, or any of the other default classes. For
example, you could change the size or background color of this window, or its window
style. When you next create a new window from the Component Store it will have exactly
the same properties as the New Window class in the Component Library.

When you have made your changes to a class

• Save the class from the File menu and close it

346 Chapter 13—Library Tools

To modify a default window object in the Component Library

• Double-click on the window class called “_Field Components” in the Browser

The _Field Components class contains all the window fields available in the Component
Store. You can change the properties of these fields to change the properties of the default
fields that appear in the Component Store. Similarly, the window class called _Background
Components contains all the background objects for window classes, such as lines and
ovals. The _Report Components and _Toolbar Components classes contain the objects for
their respective class types.

You can close the Component Library at any time, but you must close it from the
Component Store itself; you cannot close it from the Browser. The Library>>Close option
in the Browser remains grayed out while the Component Library is the current library.

To close the Component Library

• Bring the Component Store to the top by pressing F3/Cmnd-3

• Select the View>>Show Component Library In Browser option in the Component Store
menu bar, that is, uncheck the option

Adding Classes and Fields
Rather than modifying the classes in the Component Library you can add your own,
including classes that contain your own components based on the standard OMNIS field

Component Library 347

types. Your own classes in the Component Library can be called what you like, but a class
containing fields or other window components must start with an underscore. You can also
assign an icon to a class to appear in the Component Store. The names and icons of your
own classes in the Component Library are used in the Component Store toolbar.

In addition to creating classes and changing their properties you can add your own methods
to the objects in the Component Library. When you create objects from your own classes in
the Component Store they will contain your own methods.

To add a class to the Component Library

• Assuming the classes in the Component Library are visible in the Browser, select
Class>>New>>[class] from the Browser menu bar

• Name the class and double-click on it to modify it

• Edit the properties of the class, including its componenticon property

• Save the class and close it

When you close the Component Library the class you created will appear under the
appropriate group of classes in the Component Store toolbar. For example, if you add a
window class called My Window Template to the Component Library it will appear under
the Window Classes button in the Component Store.

Under each button in the Component Store toolbar you will see the default classes contained
in the Component Library called New <Class> and marked with a check mark. You can
make your own class the default by Right-clicking on the class and selecting Make Default.
If for example you make a class called My Window Template the default window class, it

348 Chapter 13—Library Tools

will appear under the Default Classes button in the Component Store toolbar and will be the
basis for all new window classes you make from the Class>>New option in the Browser.
When you create a class from the Browser or Component Store, an exact copy of the default
class template is created in your library.

To add a class containing your own components

You can create windows, reports, and toolbar classes in the Component Library which
contain your own window fields, report fields, and toolbar controls. You can add methods
to these objects too.

• Select Class>>New>>Window/Report/Toolbar from the Browser menu bar

• Name the class including an underscore at the beginning; for example, create a window
class called _My Window Objects

• Add fields or other components to the class and change their properties

The name property of an object is used to label the component in the Component Store.
You can change the text property to change the text that appears in the object; for
pushbuttons, this is the text that appears on the button face. You can also set an object’s
fieldstyle property to add a style. Furthermore, you can add methods to your own
components, which is particularly useful for pushbuttons and toolbar controls, and for
adding event handlers to window objects.

For example, you could create your own set of database buttons, set the buttonmode and
text properties for each button, and add your own methods.

Component Library 349

• When you have finished modifying the objects, save the class and close it

When you close the Component Library the contents of the Component Store will update
automatically showing any new classes or field components you have added. For example,
the My Window Objects class described above is added to the Component Store toolbar and
when selected displays the buttons added to the window.

350 Chapter 13—Library Tools

Creating your own Wizards
As well as creating class templates, you can create your own wizards in the Component
Library which are displayed in the Component Store along with the standard class templates
and wizards.

Wizards can vary greatly in complexity, but usually consist of a template class and at least
one wizard window that prompts the user for input. The main template class is the class that
appears in the Component Store which the user drags onto their library. The template class
contains some essential code in a method called $setup() and any other methods or objects
you want to appear in the new class. The $setup() method must include parentheses in its
name and can contain literally any code you want, but usually will initialize the wizard
process and open any other wizard windows. Any other windows or classes you open or
reference from the main template class must be named ?CLASSNAME to hide them in the
Component Store.

When the user creates a class using a wizard the following things happen.

1. The user drags the wizard or template class from the Component Store onto their library
in the IDE Browser.

2. OMNIS highlights the name of the new class in the Browser prompting the user to enter
a new name.

3. When the user enters a new name and hits Return, the Browser calls the $setup() method
in the main template class.

4. The $setup() method initializes the wizard process and opens any wizard windows
contained in the Component Library required for input from the user.

5. The wizard window contains code that steps through the different stages in the creation
process and creates any objects or methods required in the final class.

6. Lastly the wizard deletes the $setup() method in the new class and opens it in design
mode, ready for the user to edit or use it.

The best way to understand wizards is to look at one of them in the Component Library. For
example, take a look at the Menu Wizard.

Component Library 351

To examine the Menu Wizard in the Component Library

• Open the Component Library and display its contents in the Browser

• Open the menu class called “Menu Wizard”

This is the class that appears in the Component Store and the user drags onto their library
and renames. The menu contains no menu lines or code except for the $setup() method,
which is called after the new class is created and named in the Browser.

• Right-click on the menu and select Class Methods to view its methods

352 Chapter 13—Library Tools

The $setup() method contains some essential code and variables to initialize the wizard. The
method contains three local variables: lv_WinRef stores a reference to the wizard window,
that is in this case, the window named ?MakeMenu; lv_DestLibRef stores a reference to the
user’s library which is $clib; and lv_NewMenuRef stores a reference to the new menu class
created, which is $cclass when this method is called. The $setup() method also contains a
parameter variable pv_CompRef which accepts a reference to the Component Library that
OMNIS sends by default which is used to open the wizard window. These references are
setup using the Set reference command.

Set reference lv_WinRef to pv_CompRef().$windows.?MakeMenu

; the parens in the reference to the Comp Lib are required

Set reference lv_DestLibRef to $clib

Set reference lv_NewMenuRef to $cclass

The final piece of code in the $setup() method opens the wizard window stored in the
Component Library.

Open window instance lv_WinRef/CEN (lv_DestLibRef,lv_NewMenuRef)

; alternatively, you could use the $open() method

Do lv_WinRef.$open('*',kWindowCenter,lv_DestLibRef,lv_NewMenuRef)

The Open window instance command or the $open() method pass references to the
destination library and the new class, and open the window in the center of the screen. The
‘*’ assigns a default instance name to the menu wizard window, which you don’t need to
know.

• Open the wizard window called ?MakeMenu

Component Library 353

This wizard window contains many different fields and objects to allow the user to create a
menu. The list on the left lists all the window, report, and menu classes in their library, and
the list on the right lets the user construct their new menu. The wizard window also contains
several methods that create the new menu class and build its own methods. Your own
wizards may contain some or all of these elements. The other essential code you need to
look at is in the class methods for the wizard window.

• Right-click on the wizard window and select Class Methods to view its methods

The $construct() method contains code that initializes the menu wizard, such as building the
list of classes in the user’s library and setting up the tree list that displays the list of classes.
The $construct() method in your own wizards will be different, but should contain the line

Do $clib.$ignoreexternal.$assign(kTrue)

which allows access to the classes and methods in the Component Library. The $construct()
method also contains two parameters to accept the values passed to it from the $open()
method in the template class: pv_DestLibRef accepts a reference to the destination or user’s

354 Chapter 13—Library Tools

library, and pv_NewMenuRef accepts the name of the new menu class. You can use the Set
reference command to assign these values to suitable instance variables.

Set reference iv_DestLibRef to pv_DestLibRef

Set reference iv_NewMenuRef to pv_NewMenuRef

The remainder of the code in the menu wizard is specific to this class, but the wizard
contains one other essential method to remove the $setup() method from the new class. In
the menu wizard, this is called from the method behind the Create button, as follows.

; $event() method for Create button on ?MakeMenu wizard

On evClick

Do method build_menu ;; builds the menu

Do method delete_$setup_method (iv_NewMenuRef)

Modify class {iv_NewMenuRef} ;; opens the new menu

Close window instance $cinst ;; closes the wizard window

The method to remove the default $setup() can be called what you like, but here is the code

; code for delete_$setup_method

; contains parameter var pv_newmenu_ref to accept ref to new menu

; and local var lv_setupmthd_Ref to refer to the $setup() method

Set reference lv_setupmthd_Ref to
pv_newmenu_ref.$methods.//$setup()//

Do pv_newmenu_ref.$methods.$remove(lv_setupmthd_Ref)

; removes the $setup() method from the new menu

The remainder of the Create button method opens the new menu class in design mode, using
the Modify class command, and closes the menu wizard window.

Before creating your own wizards, you may like to look at some of the other wizards
supplied in the Component Library. The SQL Form Wizard and OMNIS Form Wizard
create windows of one sort or another and use subwindows to implement the various stages
in the wizard process. The SQL Report and OMNIS Report classes use a similar set of
wizard windows to create SQL and OMNIS reports. Open each of these classes and take a
look at their $setup() methods to see how they work and what other classes they use.

Showing Other Classes in the Component Store
Apart from adding your own templates and wizards or changing the default objects in the
Component Library, you can display classes in your own libraries in the Component Store.
Specifically you can show superclasses and subwindow classes in the Component Store.

You can show any class that supports inheritance in the Component Store by setting its
issupercomponent property. All types of class except code, schema, file, and search classes
support inheritance. You can specify the icon to appear in the Component Store for a
superclass by setting its componenticon property. The superclass will appear under the
appropriate group of classes in the Component Store toolbar, but you cannot make a

Component Library 355

superclass the default class. If you create a class from a superclass in the Component Store,
by dragging its icon on to your library in the Browser, the new class will be a subclass of the
class shown in the Component Store.

You can also make any window class appear in the Component Store as a subwindow by
setting its issubwindow property. When you are placing fields on a window, all subwindow
fields appear under the Subwindows button in the Component Store toolbar.

The library containing your superclasses or subwindow classes must be open for them to
appear in the Component Store, since the classes actually remain in your library and are not
physically copied to the Component Library. If a library containing a superclass is not open
inheritance will fail for all subclasses of the superclass, and similarly subwindow fields will
fail if the subwindow class cannot be found.

356 Chapter 13—Library Tools

Welcome Library
When you start OMNIS for the first time a library called “Welcome to OMNIS” is opened.
This library introduces you to the product and lets you create a new library or open an
existing one. You can create your own Welcome library to introduce your own application.

The Welcome library, called Welcome.lbs, is located in the STUDIO folder and is loaded
automatically. You can create you own library, using the same name, to do literally anything
when the user starts OMNIS. For example, if your application contains a suite of libraries
you can use the Welcome library to present them to the user, or like the OMNIS one you
can create a number of slides to introduce your product. Before you create your own, it’s
worth taking a look at the Welcome library supplied with OMNIS. You can load it as you
would a normal library, but since it has a Startup_Task you need to stop this running when
you open the library.

To look at the Welcome library

• Select the Library>>Open option from the Browser menubar

• Under Windows hold down the Alt key, or under MacOS the Option key, and go to the
STUDIO folder

• Open the Welcome.lbs library and view its classes in the Browser

Examine the Startup_Task and Welcome window classes, and in particular look at their
Class methods. The code in the Welcome library uses the $welcome() method which is
contained in $root.$modes and has the options kWelcomeNewLibrary,
kWelcomeLastLibrary, and kWelcomeToggleStop. You can set the mode of the Welcome
library using these constants. For example

Do $root.$modes.$welcome(kWelcomeNewLibrary)

; prompts the user to create a new library

Do $root.$modes.$welcome(kWelcomeLastLibrary) Returns iLibPath

; returns the path of the last library opened

Do $root.$modes.$welcome(kWelcomeToggleStop)

; stops the Welcome library from opening at startup

Icon Editor 357

Icon Editor
The icon data file supplied with OMNIS, called OMNISPIC.DF1, contains the icons used
throughout the OMNIS environment and in your own window fields and toolbar controls.
Each icon in the icon data file has a unique ID. When you want to add an icon to an object
you use the icon ID to identify the icon. For example, when you place a pushbutton on a
window you can set its iconid property to assign an icon to the button. When OMNIS
displays the object it looks up this ID in the icon data file and displays the correct icon.

The icon editor lets you create your own icons for picture buttons, toolbar controls, tab pane
controls, or any object that can have an icon or picture attached.

You should not edit OMNISPIC.DF1 or add your own icons to this data file, rather you
should add your own icons to a separate data file called USERPIC.DF1. If you edit the
icons or change the IDs in OMNISPIC.DF1 the correct icons will not appear in OMNIS or
your libraries. In addition, you can store your own icons in each separate library in the
#ICONS system table. The advantage of using #ICONS is that it is stored with a library and,
like any other class, you can copy it to another library or check it into the OMNIS VCS.

If you are converting a library from OMNIS 7 Version 3 and you have added icons to your
old OMNISPIC.DF1 file, please refer to the later section on Old OMNISPIC Data Files.

Creating your own Icons
When OMNIS starts up it loads the USERPIC.DF1 data file automatically, along with the
OMNISPIC.DF1 file. OMNIS will not recognize any other names. To create your own
icons in OMNIS you use the icon editor and save your icons in the USERPIC.DF1 data file
or #ICONS for a library.

To open the USERPIC data file

• Select the Tools>>Icon Editor option from the main OMNIS menu bar

• Select the File>>Open Icon File option on the Icon Editor menu bar

• Navigate to the Icons folder in the OMNIS main folder and open USERPIC.DF1

To open the #ICONS system table

• Show all the classes in your library in the Browser using Shift-Ctrl/Cmnd-A

• Double-click on the #ICONS system table

or if you have already opened USERPIC or #ICONS

• Select the USERPIC.DF1 or ‘Icons - Library name’ option from the Icon editor File
menu

358 Chapter 13—Library Tools

To add new icons to an icon data file or #ICONS, you have to first create a new page to
store the icons.

To create a new page

• Select the Page>>New Page option in the Icon Editor

• Give the new page a name, something like “General 1”

The Icon Editor creates a new page in which you can create up to twenty different icons.
You may want to create a separate page for each group of icons, for example, a group for
general controls, a group for database icons, and another for PIM applications. You don’t
have to fill a page before creating a new page, although each new page you use will result in
more memory being required.

You can create a 16x16, 32x32, and 48x48 version for each icon by checking the
Page>>16x16, 32x32, and/or 48x48 Support option in the icon editor. These support
options apply for the whole page, so for example, if you create a 48x48 image for an icon
and turn off 48x48 support for the page, all 48x48 images for the page will be lost.

Icon Editor 359

The Icon Editor also supports full page icons or images that are larger than 48 x 48 pixels.
In this case, each page supports a single image in which you can specify the image height
and width as part of the page definition. You can modify the image in the same way as other
icons, and assign an icon id to the page.

You can create an icon for the highlighted and checked state for controls such as check
boxes and radio buttons using the Page>>Multi-State Support option. However, for multi-
state icons you can create only four icons per page (one per row), with up to five different
icons for different states or combinations of states. You only need to assign an ID to the
Normal state for each icon, as shown.

When the icon edit area has the focus, you can use the following keys to change the current
tool in the editor. Note that no modifier keys are needed, just the letter key.

Key Sets which tool?

m marquee, or select

p pencil

b brush

i eye dropper

k bucket

e eraser

+ increases eraser size

- decreases eraser size

For most toolbar-type buttons you only need to create 16x16 versions of each icon. This is
the most efficient approach, since if you limit the size to 16x16 for all the icons on one
page, the page will be stored more efficiently and the USERPIC.DF1 data file will be
smaller.

360 Chapter 13—Library Tools

When you’ve created an icon in one cell,
you can drag it into one of the other size
cells and OMNIS will scale it to fit that
resolution. It’s better to create the icon at
a larger resolution and scale it down. If
you create all three views for an icon you
can specify one particular view as the
default using the Image>>Default to
16x16/32x32/48x48 option, or you can double-click on the button above the appropriate
icon. The default size is shown on the button in bold. When you create a window object and
select an icon for the object, it displays at the default size specified in the icon data file,
unless you specify one of the other sizes.

When you have finished an icon and all its views you must give it a unique ID either using
the Image>>Set Icon Id option on the Icon editor, or by double-clicking on an icon in the
grid. The Set ID dialog does not allow an ID that’s already in use in the current icon data
file.

Your own icon IDs must not be the same as the IDs in the OMNISPIC.DF1 file, therefore
you should start at 10000 and allow a hundred numbers for each page or group of icons. For
example, you could have a page of general icons numbered from 10000, then a page of
database icons numbered from 10100, the next page would be numbered from 10200, and
so on.

If the USERPIC.DF1 file is currently loaded in OMNIS, you can use any icons that you’ve
added straight away. Similarly, if you change an icon that is currently in use on your screen
you will see the changes immediately. However if you have created a new USERPIC.DF1,
you must restart OMNIS to load the icon data file.

When you have created all your icons close the USERPIC.DF1 file, and close the Icon
Editor.

Editing an Icon Data File
You can change the visual appearance of any icon, but you should avoid changing the ID of
an existing icon. If you change the default size of an icon used in your application you may
get unexpected results. In most cases, it is better to create a new icon with a new ID rather
than radically change an existing icon.

Icon Editor 361

Storing Icons in a Library
You can store icons on a per library basis in the system table class called #ICONS. If you
can’t see #ICONS in the Browser, use the Browser Options (F7/Cmnd-7) to show the
System Tables. You can edit the #ICONS system table in the Icon Editor by double-clicking
on the class in the Browser. The $iconid search order for any object is #ICONS,
OMNISPIC, USERPIC.

Embedded System Colors
The OMNIS icon editor pages are always stored in 256 colors. The color palette is the
standard OMNIS color palette. Under Windows, controls such as buttons and check boxes
change color depending on what you have set in your Control Panel. As OMNIS simulates
check boxes and radio buttons with icons from OMNISPIC.DF1, the bitmap needs to
change color when the system colors are changed. To achieve this, you can embed system
colors into icon pages.

The Page menu lets you switch between Standard 256 colors mode and Embedded system
colors mode. Both modes appear to use the standard OMNIS color palette, but in Embedded
system colors mode, color indexes 32, 64, 96, 128, and 160 are remapped to five system
colors. You can use these system colors in your icons and OMNIS will use the colors
currently loaded in the user’s system. If the user changes their system colors while OMNIS
is running, icons are reread from the appropriate icon data file and the correct colors are
displayed.

When you edit an image using system colors, the colors shown in the editor are not system
colors, but the original color as seen in the standard OMNIS color palette (for example,
dark red may be used instead of a system color). This helps OMNIS find colors to replace
with system colors.

OMNIS supports five system colors: kColor3Dface, kColor3Dshadow, kColor3Dhilite,
kColorWindow, kColorWindowText.

The standard OMNIS color palette is shown below. This palette is used for all icons in
OMNISPIC and USERPIC files.

362 Chapter 13—Library Tools

The standard OMNIS color palette with embedded system colors switched on is shown
below. The system colors are shown in the right-hand column of the palette replacing the
standard color indexes. You can also use the larger buttons to select a system color.

Transparent Color
In addition to system colors, you can embed a special color which represents a transparent
area in your icons. Select the Page>>Substitute Transparent Color option to show the
transparent color in the palette, shown with a T and currently set to bright green. Select the
color and use it to paint or fill areas in your icon. Any pixels that use this color appear
transparent in OMNIS.

Old OMNISPIC Data Files
The OMNISPIC.DF1 data file supplied with OMNIS has a completely different format
from the one supplied with OMNIS 7 Version 3. Therefore you cannot use the old
OMNISPIC.DF1 data file in OMNIS unless you convert it to the new format.

The icon data file called USERPIC.DF1 supplied in the Icons folder is the old
OMNISPIC.DF1 file converted to the new format. This ensures that your converted
libraries have the correct icons for all your picture buttons and other controls, assuming they
are not larger than 48 x 48, which is the largest size supported. If you haven’t changed the
old OMNISPIC.DF1 file at all, you don’t need to do anything, that is, you can ignore the
following section. However if you’ve changed your old OMNISPIC.DF1 file or added icons
to it, you will need to convert it and replace the supplied USERPIC.DF1. Before you
convert your old OMNISPIC.DF1 file, make sure you have a secure backup.

Icon Editor 363

To convert your old Omnispic data file

• Quit OMNIS and remove or rename the USERPIC.DF1 file supplied with OMNIS in
the Icons folder

• Restart OMNIS and open the Icon Editor from the Tools menu

• Select the File>>Convert Old Omnispic option in the Icon Editor

• Find and select your old OMNISPIC.DF1 file

• Go to the Icons folder in the main OMNIS folder, save the converted file as
USERPIC.DF1, and restart OMNIS

When you restart OMNIS the USERPIC.DF1 file will be loaded automatically. If you want
to add icons to OMNIS you should add them to the USERPIC.DF1 data file, as above.

Custom Cursors
You can design your own cursors for fields and store them in either the USERPIC.DF1 data
file or the #ICONS system table in your library. You create the cursors in the Icon Editor in
very much the same way as for custom icons. Each cursor can contain four images to
accommodate the differences in size and color required for cursors under the different
operating systems.

To create your own cursors

• Open the Icon Editor from the Tools menu

• Select the File>>Open Icon File option from the editor menubar

• Navigate to the Icons folder under the main OMNIS folder, and select the
USERPIC.DF1 icon data file

or to store cursors in your library

• Show the system tables in the Browser and double-click on #ICONS

for an icon data file or #ICONS

• Select New Cursor Page from the Page Menu, enter a Page name and press OK

Each cursor page allows up to four different cursors: for each cursor you should add the
equivalent image for each platform.

364 Chapter 13—Library Tools

– 16 B/W
MacOS in black & white mode; only use black & white (plus transparent color if set)

– 16 Color
MacOS in color mode, 16x16 pixels in size

– 32 B/W
Win16 mode; only use black & white (plus transparent color if set)

– 32 Color
Win32 mode, 32x32 pixels in size

• Draw an image for each platform

• Double-click on one of the cursor images to set the ID

Specifying the cursor IDs is the same as for icons, that is, you should choose an ID over
100000, to avoid conflicts with OMNIS icons, up to a maximum value of 16777215.

Cursor Hot Spot
The hot spot for a cursor is the single pixel on screen that is
activated when you click the mouse, such as the tip of a pencil
tool. You can specify a hot spot for a cursor in the Icon Editor
by clicking in the image with the Hot Spot tool.

• When you are done, select File>>Save from the Icon Editor
menubar and close the Userpic file

Cursor Properties of Objects
You can set the cursor properties of an object in the Property Manager or using the notation.

To set the cursor properties for an object

• Click on the object and open the Property Manager by pressing F6/Cmnd-6

• Click on the Appearance tab and set the cursor property

• Click on the Action tab and set the nodropcursor and candropcursor cursor
properties

Importing and Exporting Data 365

In the Property Manager, the cursor, nodropcursor, and candropcursor properties have two
parts: an object can have either a standard or custom

– Standard cursor
a dropdown list which lets you select one of a number of standard cursors represented
by OMNIS constants (which are not stored in an OMNIS icon data file or #ICONS);
the list contains the value kcursDefault, which you select if you want the default cursor
for the object

– Custom cursor (specified by iconid)
a dropdown list button which lets you enter or select the id for a cursor; the id identifies
a custom cursor in an OMNIS icon data file or #ICONS; once you have entered a
cursor id, the dropdown field in the first part of the cursor property is set to
kcursCustom

You can use the notation to assign a cursor property, as follows:

Do $cobj.$cursor.$assign(kcursArrow) ;; assigns a standard cursor

Do $cobj.$cursor.$assign(100001) ;; assigns a custom cursor

Importing and Exporting Data
You can import and export data to and from your OMNIS application using a number of
different data formats. You may want to use the import/export facility prior to mail merging,
creating spreadsheets, or for moving data between an OMNIS data file and a SQL database.
You can import data from a file, port, or client.

You can import and export data using list or row variables. If you are going to use the data
in conjunction with an OMNIS database, you must write methods to extract the data from
the list and save it to the database or vice versa.

Data Formats
You can import from or export to virtually any application or database providing it supports
one of the following OMNIS data formats

– Delimited (commas)
a text format that separates data with tabs

– Delimited (tabs)
a text format that separates data with commas

– Delimited (User delimiter)
a text format that separates data with a user-defined character

– One field per line
a text format that puts the data in a row on separate lines

366 Chapter 13—Library Tools

– OMNIS data transfer
a proprietary format that lets you transfer data between OMNIS databases

Null values are exported as empty if the OMNIS preference $exportnullsasempty is set.

Delimited (commas)
Each field is separated by a comma and each record or row of data starts on a new line. The
newline character is ASCII 10 followed by ASCII 13 on a PC, but is just ASCII 13 under
MacOS. You can enclose text fields in double quotes so that commas within the text data
are not confused with field delimiters: this is set by the library preference exportedquotes
or the Enclose exported text in quotes command.

Long character fields are exported, but control characters are replaced by spaces.

Delimited (tabs)
This file format is similar to delimited (commas) format, except that tabs (ASCII 9) are used
between fields instead of commas. Each record or row of data starts on a new line. You can
enclose text fields in double quotes so that tabs within the text data are not confused with
field delimiters; this is set by the library preference exportedquotes or the Enclose
exported text in quotes command.

Long character fields are exported, but control characters are replaced by spaces.

Delimited (User delimiter)
This format is similar to delimited (commas), but uses the character in the library preference
$userexportdelimiter. This property takes a single character and defaults to ; (semi-colon).
The kEXuser constant represents the user-defined character.

One field per line
With this format each field starts on a new line. OMNIS does not embed record information
into the file. When you use this format to transfer data from one OMNIS application to
another, the number of fields in the file must be exactly the same as the number of fields
into which the data is stored, otherwise you will not get the expected results. If there are
more fields in an export file than you want to import, specify some variables for the
unwanted data so that the extra data is imported only as far as RAM and never stored in the
data file.

If you have any doubts about the fields stored in the export file, load the file into a text
editor and check it first.

Long character fields are exported, but control characters are replaced by spaces.

OMNIS data transfer
A proprietary format that lets you export data of all types from an OMNIS database,
including pictures, long character fields and character fields that include control characters.

Importing and Exporting Data 367

If an OMNIS data file should become corrupt because of bad media or similar hardware
faults, you may be able to export data in this format and import it into a new data file.

Exporting Data
Using the Tools menu you can export data from an OMNIS data file.

To export data using the Tools menu

• Select the Tools>>Export Data menu item

• Select the required export format in the left-hand list

• Click in the Select using search box if you have defined a search class to filter out
certain records

• Enter the main file for your data file in the Main File entry field

Next you need to construct a list of fields to be exported. The fields can be from the
specified main file and from any connected files. To do this either

• Select a line in the Fields list and enter a field name in the Name entry field, or enter
the field names from the Catalog

or

368 Chapter 13—Library Tools

• Select the Load Fields From File Class option in the Export Data menu on the export
data dialog

The Export data menu lets you insert, delete,
and clear fields from the field list.

– Insert Field
inserts an empty line in the field list at the
selected line; all field names in the list after
the selected position are moved down

– Delete Field
deletes the field name in the list at the
selected line; all field names in the list after
the selected position are moved up

– Clear Fields
clears all field names from the field list

• Select a field that you want to index and click on the Index field check box

• When your list of fields is complete, click on Start

You are presented with a standard dialog into which you enter the export file name. Under
Windows, the file name extension should be .TXT.

• Enter a file name and click on OK

OMNIS reads the data file in the order specified by the selected index field and writes the
fields to the selected file. You can check the export file by opening it in a text editor.

The following sample data containing names and phone numbers was exported using the
Delimited (commas) data format: the ID (indexed field), Title, FirstName, LastName, and
Tel fields were selected from the database. Note that each value is enclosed in quotes.

1,"Mr","James","Briggs","01326 671888"

2,"Miss","Thelma","Hodges","415 286 5378"

3,"Mrs","Lavinia","Williams","01394 243847"

4,"Dr","Peter","Eagleburger","514 538 4556"

5,"Rev","Leonard","Eccles","01452 974722"

Importing and Exporting Data 369

Importing Data
Using the Tools menu you can import data into an OMNIS data file from an import file. The
import file must be in one of the data formats described above. You can also import data
into a list or row variable, which is described in the next section.

To import data using the Tools menu

• Select the Import Data option from the Tools menu

• Select an import data format and click OK

You are presented with a standard dialog in which you select the file to be imported.

• Select a file name from the list and click OK

Once you select a file name, the Import data window is displayed. It includes the Import
data menu which lets you insert, delete and clear fields in the list.

370 Chapter 13—Library Tools

The data in the export file will be read into the OMNIS fields in the order in which it is
stored in the file. It is, therefore, essential that the field list you specify corresponds with
that of the incoming data. If a line in the list is left blank, the data for that line will not be
imported, and if there are too many fields in the list, the extra ones are left empty.

You need to construct a list of fields to be imported, although in some cases OMNIS will
enter a list of fields for you. To add to the field list

• Select a line in the Fields list and enter a field name in the Name entry field, or enter
the field names from the Catalog

or

• Select the Load Fields From File Class option in the Import Data menu on the import
data dialog

• Select either the Insert records or the Update records option by clicking on the
appropriate radio button

If you choose the Insert records option, new records are created from the imported data.
The Update records option updates the existing records in your data file.

• When your field list is complete, select Start

The number of records imported is displayed when the import is complete.

Importing and Exporting Data 371

For each record read from the file, a matching record is sought in the OMNIS data file. The
first field in each record of the imported file is used to carry out an exact match find on the
data file and the matching record updated with the incoming values. Records for which
there are no matching records in the data file are ignored.

Importing Data into List and Row Variables
You can import data into a list or row variable using the Import data command. You can
import either multiple rows or a single row depending on whether you specify a list or row
variable in the Import data command. You must specify the list or row variable with the
corresponding columns and column data types, although data conversion is performed when
necessary. The list or row is cleared before import begins. When importing into a list, you
can use its $linemax property to limit the number of rows imported. You can test the flag to
see if there is more data to be imported, particularly if you are importing into a row variable
on a record-by-record basis.

You can initiate the import process using Prepare for import from file which sets up the
data format, and terminate it using End Import. For example

; importing into a list variable

Prompt for import file ;; set up the file ..

Prepare for import from file {Delimited (commas)} ;; and format

Calculate List1.$linemax as 100

Import data {List1} ;; brings in the first 100 rows of data

End import

Close import file

; process the data in List1

; importing into a row variable

Prompt for import file

Prepare for import from file {Delimited (tabs)}

Import data {Row1} ;; get first row

While flag true

; process the data in Row1

Import data {row1} ;; get next row

End While

End import

Close import file

You can also import data one field at a time from file or port into the CRB, using Import
field from file and Import field from port. These commands also have the option to import a
character at a time if, for example, you need to identify non-standard delimiters (see below).

372 Chapter 13—Library Tools

Exporting Data from List and Row Variables
You can export data either from a list or row variable to a file or port. The commands
Prepare for export to file and Prepare for export to port specify an export data format and
start the export operation. The Export data command exports all the data in a list or row
variable. End export terminates the operation. For example

; exporting from a list variable

Prompt for print and export file

Prepare for export to file {Delimited (commas)} ;; set export format

Export data {List1}

End export

Close print and export file

; exporting from a row variable

Prompt for print and export file

Prepare for export to file {Delimited (commas)} ;; set format

Repeat

; load some data into Row1, clear the flag if finished

If flag true

Export data {Row1}

End if

Until flag false

End export

Close print and export file

Prepare for export to file and Prepare for export to port both generate an error if no file or
port has been selected.

Export data takes a row or list variable as a parameter and exports all rows from the list or a
single row. There is an error if no Prepare for export command has been executed. The flag
is set if the export is successful and cleared if it fails; this often denotes an ‘out of disk
space’ condition. The first time Export data is encountered any heading to the export file
required by the export format is generated from the list or row definition. You must use the
same list or row definition when exporting to the same file, otherwise an invalid export file
will result: this is particularly important if you use the One field per line data format.

End export terminates any export in progress and, if appropriate for the export format, adds
a trailer to the export file. You must use End export before the file or port is closed
otherwise the exported data may have an invalid format.

Importing and Exporting Data 373

Exporting Data from a Report
Before you can export data from a report, you must create a report class containing all the
fields to be exported. To make a report export its data you need to set its $exportformat
property.

To create a report for exporting data

• Create a new report class from the Component Store, or from the Browser

• Add the fields from the Component Store

• Set the $exportformat property of the report to one of the export formats

• To print from a file class, set the $mainfile property to the main file in your database

• To print from a list, set the $mainlist property

• Save the report class and close it

You can print the report from the Browser, or from a method.

To print a report from the Browser

• Select the File>>Report Destination option from the main OMNIS menu bar, and set
the destination to File

• Right-click on the report class and choose Print Report from the context menu

The resulting report contains data in the One field per line format.

To print a report from a method

If you print the report to either a port or a file, the fields defined in the report are exported
in the selected export format. You can also export to the clipboard where you can examine
and paste the data into other applications. For example

Set main file {FPorders}

Set report name R_Export

Send to file ;; sets the print destination

Prompt for print or export file

If flag true

Print report

Close print or export file

End If

If the print file is not closed, further exported data is appended to the end of the file.

374 Chapter 13—Library Tools

Translate Input/Output
The Windows environment uses the ANSI character set and not the standard DOS extended
ASCII characters as used by many other programs and printers. When you export data the
Translate input/output option forces OMNIS to convert ANSI to ASCII, and when you
import data to convert ASCII to ANSI. This option only applies to ASCII/ANSI values
greater than 127. The Translate input/output option is controlled by the $translateoutput
root property. You can set it using the notation, or in the Property Manager under the
Tools>>Options menu item.

Build export format list
You can use the Build export format list command to create a list of data formats and use a
number between 1 and $linecount to select an appropriate data format from the list. This is
particularly useful in non-English language versions of OMNIS where the data formats may
have been translated. For example

; This is language dependent

Set export format {Delimited (tabs)}

; this is universal

Set current list LOCAL_LIST

Build export format list (Clear list)

Set export format {[LOCAL_LIST(1,2)]}

; line 2 is tab-delimited in all language versions

Checking Libraries 375

Checking Libraries
You can check a library for disk errors or other inconsistencies using the Check option,
which you can access by right-clicking on your library in the Browser.. Note that for a large
library, this operation may take some time and to ensure data integrity, must not be
interrupted once it has started.

To view the library tools context menu

• Right-click on your library in the Browser

To check a library

• Right-click on your library in the Browser

• Select the Check option in the library context menu

OMNIS closes all the design windows and scans all the classes in your library. On
completion it reports any problems such as inconsistencies in indexes.

376 Chapter 13—Library Tools

Retokenizing Libraries
As you write OMNIS methods, the method editor converts the commands you enter into a
special internal form that replaces field and file class names with numbers. This process is
called tokenization. The file class and field names are tokenized into their identifying
numbers, the file class identifier and the field number within the file class. Tokenization
occurs in all the libraries in your application.

When you make a reference to an object defined in another library, you refer to the library
name, the class name, and the field name. In this case, OMNIS tokenizes the field name
only, leaving the file class and library names in their text form.

Retokenization ensures that all references to other libraries in the current library are correct.
OMNIS searches the current library for external field references with the library specified
and replaces the reference with a specific token.

WARNING Whenever you retokenize the current library, you must open all the external
libraries to which the current library refers. If you don’t references to external field names
will be lost.

To retokenize a library

• Right-click on your library in the Browser

• Select the Retokenize option from the library context menu

Retokenizing Libraries 377

The Use file names and field tokens option represents field references with the file class
name and field number and ensures existing tokens are safe to use; this is the default
behavior. You use this to convert references after completely tokenizing them with the next
option below.

The Use file and field tokens option represents field references with fully tokenized file
class and field numbers: this makes the library smaller and more efficient but you should
use it only when the libraries are stable, just before deployment for example.

The Use file and field names option represents field references with file class and field
names and no tokenization at all.

For the best mix of performance and safety, you should convert your libraries with Use file
and field tokens just before deploying your application, then retokenize with Use file
names and field tokens to continue working on the libraries for the next release. You
should not continue working on libraries once you have fully tokenized the external field
references.

Note that retokenizing specifies the object for conversion but does not change the standard
format of OMNIS: any external field references you add after retokenizing are represented
by the file class name and field number.

378 Chapter 13—Library Tools

Private Libraries
If you make a library private its classes cannot be viewed and its methods are not accessible
from other libraries. Making a library private is irreversible. You must save a copy of your
library before you make it private in case you do need to modify it at a later date.

To make a library private

• Right-click on your library in the Browser

• Select the Always Private option in the library context menu

You can make a library private on a temporary basis by setting its isprivate property to
true. In this case, you have to set this property each time you open your library; you could
do this in the startup code in your library.

Locking Classes
You can lock classes on an individual basis. A locked class can no longer be viewed,
deleted, changed, renamed, duplicated, or printed. Locking a class is irreversible. Therefore
before you lock a class, make sure you have a copy.

To lock a class

• Right-click on the class in the Browser

• Select the Lock option in the context menu

You can hide an instance on a temporary basis by setting its isprivate property to true. You
have to set this property each time the instance is opened.

Passwords and Security 379

Passwords and Security
You can add up to eight user passwords plus a master password to each library. The
passwords in your library are stored in the #PASSWORDS system table. You can use
passwords to control access to the library itself, and to different objects in your library
including menus and toolbars. Passwords are not hierarchical in the sense that user 1 has
greater access than user 2, rather you grant particular access privileges to each separate user
number. New libraries do not contain any passwords, therefore as master user you can
define them, and assign user numbers to the objects in your library.

Once you have entered a master password, your library will prompt you for a password
when you open it. The master user has unrestricted access to all parts of your library. When
you open a library you can enter the master password or one of the other user passwords
and OMNIS will grant you the appropriate access. The number of the current user(s) is
stored in the $userlevel property for a library.

Setting Up Passwords
To set up passwords for your library

• Open your library in the Browser and show the system tables; you can press Shift-
Ctrl/Cmnd-A to show all the classes in your library

• In the Browser, double-click on the #PASSWORDS system table

The Passwords dialog is empty for new libraries.

• Enter a password for the Master user, and for users 1 to 8

380 Chapter 13—Library Tools

Passwords can be up to fifteen characters long. You should enter passwords for all users
since leaving any passwords blank gives full access to a user who enters no password.

• Click on OK to close the window and register your passwords

From now on, you can edit the passwords system table only if you are the Master user, that
is, if you open the library with the master password. It is therefore very important not to
forget the master password!

Restricting Access to Menus and Toolbars
You can restrict access to menus, menu lines, toolbars, and toolbar controls by removing
user numbers from these objects. These objects have the property $users, set by default to
12345678 to give access to all users. To restrict access to an object, delete the appropriate
number from the string. For example, to restrict access to an object for user 3, delete 3 from
the string, leaving 1245678.

When you restrict access to an object, the object is grayed out and users cannot select it.
Setting the $users property for menus and menu lines is described in more detail in the
Menu Classes chapter.

Controlling Access using Methods
You can test the $userlevel property to find out the current user. For example, the following
method checks the current user number before allowing a data file record to be deleted.

; Delete method

If $clib.$userlevel = 3

OK message {Your are not allowed to delete data}

Quit method

End If

Delete with confirmation {Are you sure you want to delete?}

Alternatively, you can use a switch statement to branch according to the current user.

Switch $clib.$userlevel

Case 1,2,3,4

; code for user 1, 2, 3, or 4

Case 5,6

; code for user 5 or 6

Case 7,8

; code for user 7 or 8

Default

; code for the Master user only

End Switch

Multi-library Projects 381

Having setup passwords in your library, OMNIS will always prompt you for a password
when you open the library. However you can open a password prompt at any other time
using the Change user password command.

Multi-library Projects
OMNIS lets you structure your application into one or more libraries that you can load
either together or separately. This lets you

– break up your application into smaller, less complex subsystems

– develop the subsystems in different programming groups or departments

– test the subsystems or modules separately

– reuse libraries in different applications, mixing and matching reusable code without
modification

Although OMNIS always ensures the integrity of objects, there is no built-in locking or
concurrency checking to prevent two users from modifying the same object. If more than
one user opens an object in design mode, the last one to close the object overwrites the
changes made by the other users. There is no way to ensure that changes made to an object
are seen by other users before the library is reopened: objects are cached in memory and it
is not possible to predict when OMNIS will discard an object from the cache.

The OMNIS VCS provides you with a full-featured version control system for your OMNIS
libraries and other components. If you put your application under version control, you
eliminate the inherent risks involved in group development.

Localizing your Application
If you are developing OMNIS applications for an international market, you may want to
translate your libraries and/or OMNIS itself into another language. OMNIS provides tools
for localization in the LOCAL folder under the main OMNIS folder.

To translate a library you

– Export the text and literal strings in your library that require translation

– Translate the text

– Import the text back into your library

To open the translation library

• In the standard IDE Browser, select Library>>Open to bring up the standard open
library dialog

382 Chapter 13—Library Tools

• Locate the translation library called trans.lbs in the Local folder under the main
OMNIS folder and open it

The translation browser appears. It displays any libraries you currently have open, with the
exception of the translation library itself. If the library you wish to translate is not open, use
the Library>>Open option on the translation browser menu to open it.

Exporting the Text in your Library
To translate your library you need to export all the text and literal strings in your library that
require translation.

To export the text in your library

• Select Edit>>Export from the translation browser menubar

An export dialog appears; you can choose whether to export to an OMNIS data file or to a
text file.

In either case, the Include Comments checkbox lets you filter out comments when you
export text; generally you will not need to translate comments as they are not visible to end-
users of your library.

Exporting to an OMNIS Data File
This opens a standard file dialog that lets you supply the name of the data file. Having
named the OMNIS data file, the export process starts, and an export log keeps you informed
of progress. You can export more than one library to a data file if you wish.

Exporting to a Text File
This opens a standard file dialog that lets you supply the name of the export file; the default
is export.txt. OMNIS generates a file consisting of all the literal text strings as a standard
ASCII text file in the format of the current platform. An export log keeps you informed of
progress.

Localizing your Application 383

Translating the Export Data File
You edit the contents of the exported OMNIS data file in the translation library itself.

To translate the contents of the exported OMNIS data file

• From the translation browser menu, select Edit>>Editor

You are prompted for the data file name.

• Select the library you wish to translate from the list that appears when you select
File>>Open

A grid field displays information about the translatable data. You enter changes in the New
Value column. Alternatively, you can select Find and Replace from the Edit menu to look
for specific strings; note that Find and Replace will not find partial strings. For example, if
you have a test label whose old value is “My current label”, a search for the word “current”
will not locate this label.

• Once you have completed your changes, use File>>Save to save them back to the data
file

Translating the Export Text File
You can edit the contents of the exported text file in any standard text editor. If you use a
Word Processor, you must ensure that you use it in text mode to avoid any special
formatting characters being included in the text.

OMNIS structures the export text file as a sequence of three elements per string literal in
your library. Each element is on a separate line in the export file. Each line starts with a
keyword that identifies its purpose, as follows

– REF=
the location of the string in your library: Do not change this.

– OLD=
the original text string in quotes, including any control characters. Do not change this.

– NEW=
an empty string (“”) for you to fill in with the translated text

OMNIS regards all other lines as comments and ignores them when you import.

If an original string contains a double quote character, OMNIS places it within single
quotes, and the NEW string should match it exactly. If any item contains more than a single
literal, the OLD= line will consist of the right number of separate, quoted strings, each
separated by a space. Strings can be up to 255 characters in length.

384 Chapter 13—Library Tools

If you leave the NEW= empty, the OLD= string will be unchanged and untranslated. If you
remove the quotes after NEW=, OMNIS replaces the OLD string with an empty string.

Importing Translated Text
Having translated the text in your library in either an OMNIS data file or text file, you can
import it back into your library using the translation library.

To import translated text back into your library

• Select Edit>>Import from the translation browser

• Check the appropriate box to indicate whether you are importing from a data file or a
text file and locate the file when prompted to do so

An import log and progress bar keeps you up to date with the import process.

• When you have finished, close the import log and the translation browser

Localizing OMNIS
Developers and distributors in non-English speaking countries may need to localize
OMNIS. You can localize the following OMNIS internal items:

– The names of the days of the week

– The names of the months of the year

– Separator characters

– The text for Yes/No, OK/Cancel, True/False, Am/Pm and On/Off

– The national sort ordering

Storage of Localization Data
All libraries share the same set of data, stored in an OMNIS data file or localization
database called OMNISLOC.DF1, located in the OMNIS local folder.

OMNISLOC contains a data slot for configuration data; each record in that slot contains a
complete set of data corresponding to a particular language. It also contains a data slot with
a single record, which identifies the current language, that is, the current set of configuration
data.

The Localization Data
The following items are stored for each language.

Localizing OMNIS 385

Days of Week
This comprises 2 strings for each of the 7 days of the week, allowing for a full name such as
Wednesday, and an abbreviated name such as Wed.

Months of Year
This comprises 2 strings for each of the 12 months of the year, allowing for a full name such
as August, and an abbreviated name such as Aug.

Separators
These comprise the following:

– The decimal point used for all numeric fields

– The thousands separator used for numbers

– The function parameter separator

– The decimal point used when importing data

– The field separator used when importing

– The sequence used for quoting names in the notation

Standard Text Strings
These comprise the strings for Yes and No, OK and Cancel, True and False, Am and Pm,
and On and Off.

National Sort Ordering
This is a text string which defines the sort ordering for national fields. To eliminate any
cross-platform ambiguity introduced by the different character sets involved, this is stored
as a 512 byte ASCII representation of the 256 byte sort ordering. Each byte in the sort
ordering represents the position of the character equal to that byte in the sort order.

The natcmp() function
The natcmp() function lets you compare two values using the national sort ordering.

natcmp (value1, value2)

OMNIS converts both values to strings before doing the comparison.

OMNIS uses the same rules for comparing the strings as it does for normal strings, except
that it performs the comparison using the national sort ordering.

natcmp() returns 0 if the strings are equal, 1 if value1 > value2, and -1 if value 1 < value2.

386 Chapter 13—Library Tools

User Interface
The OMNIS preferences accessed from the IDE Tools>>Options menu line let you assign a
new language from the dropdown list in the newlanguage property. The current language is
shown in the language property. The language must already be defined in the localization
data file.

The new language does not apply until you quit and restart OMNIS. Note that if the
localization database is shared by several users, then the new language setting affects each
of them, as soon as they restart.

An OMNIS library, OMNISLOC.LBS is provided that lets you create and edit language
information. To use it:

• Take a backup of the OMNISLOC.DF1; you may prefer to work on the backup copy
rather than the live copy, in which case you should make a working copy as well as a
backup copy

• Open the OMNISLOC.LBS library, found in the OMNIS local folder. You are
prompted for the location of the localization data file and a localization menu is
installed on the IDE menu bar, to the right of the Tools menu

• Select Current Language to display the language in use

• Select Language Records to create a new set of language information, or to edit an
existing one. This displays a dialog containing a set of tabbed panes and the standard
OMNIS Insert, Edit, Find, Next and Previous buttons

You use the Next and Previous buttons to move through the records in the data file, the Find
button to locate a particular language record, and Edit to modify data already present in the
data file.

Two Insert buttons are available. Insert lets you create a brand new record, while Insert CV
lets you make a copy of an existing language record and edit that. This is particularly useful
for cases where there are only minimal differences between two language records. To use
Insert CV:

• Display the language record you want to copy

• Click on Insert CV

A new record is created. Remember to edit the language name as well as the specific
internal data.

• When all the data is input, click on OK to store it and close the library

• If you were working on a copy of the data file, move it back to the local folder

Localizing OMNIS 387

• Close the OMNISLOC library

Any fields that are left blank will default to a single space. Some of the fields on the
General tab are limited in terms of which characters can be used; for example trying to
define a letter as a decimal separator is not allowed, and will generate an error message.

Notation
There is no requirement to manipulate localization data at runtime, so the localization
notation is minimal.

– $root.$prefs.$language
a read-only property which returns the name of the language OMNIS is currently using

– $root.$prefs.$newlanguage
a property that lets you assign the name of the new language, that is, the language
OMNIS will use when it restarts

– $hascurrlangnationalsortorder
a property of a data file, for example
$root.$datas.DataFile.$hascurrlangnationalsortorder
if true the sort order matches that for the current language, and false otherwise

Every data file stores its national sort order. When you create a new data file, OMNIS stores
the national sort order for the current language in the data file.

$hascurrlangnationalsortorder is assignable, but you cannot set it to kFalse only kTrue.
When set to kTrue OMNIS drops all of the indexes from the data file, changes the sort order
to that for the current language, and rebuilds all of the indexes.

388 Chapter 14—Version Control

Chapter 14—Version
Control

This chapter describes how you use the OMNIS Version Control System, or VCS, to
control OMNIS application development in a team environment.

An OMNIS application may consist of a number of elements. Apart from the OMNIS
libraries and data files, you may have your own externals, components, text files and so on
that are all necessary to the running of the application. In this chapter, the term component
is used to refer to all these types of object and files stored on disk. Specifically, a non-
OMNIS component is any disk file or external component other than an OMNIS class.

Version control lets you revise OMNIS library files and other application components
systematically. In a team environment, with several people working simultaneously on the
same application, you need to ensure that only one person can change a particular
component at a time. Using the OMNIS VCS you can control the development of your
OMNIS applications, or any other project involving many different files such as Internet or
Intranet applications. Specifically, the VCS can manage OMNIS libraries or their classes,
external components, DLLs or Code Fragments, OMNIS data files, text or word processor
files, or any other types of file required in your OMNIS application.

To place OMNIS libraries under version control you check them into the OMNIS VCS
from the Browser in OMNIS Studio, or for non-OMNIS components from the File Browser
in the VCS itself. All the components you check into the VCS are kept in a project. The
VCS stores each project in its own repository database, which can be a server database or
an OMNIS data file.

The OMNIS VCS provides all the functionality to set up, manage, and use version control,
including

– Setting up a project and repository database

– Checking in OMNIS libraries and other non-OMNIS components

– Managing and supervising users

– Building projects and libraries for distribution

– Managing projects and granting user privileges

– Setting VCS options

Opening the VCS 389

Compatibility with OMNIS 7
You cannot access a repository set up in OMNIS 7 in the OMNIS Studio version of the
OMNIS VCS, nor can you use an OMNIS Studio VCS repository in the OMNIS 7 VCS.
However, you can have an old OMNIS 7 VCS repository and a new OMNIS VCS
repository coexisting on the same server, each accessed by their respective versions of the
OMNIS VCS.

Opening the VCS
You access the OMNIS VCS from the Tools menu on the main menu bar.

To open the OMNIS VCS

• Select the Tools>>Version Control System menu option on the main menu bar

The VCS Browser displays all your open projects and works in a very similar way to the
IDE and SQL Browsers. The VCS menu lets you open and close projects, and perform user
administration functions. When you open a project, the VCS Component window opens

390 Chapter 14—Version Control

showing the contents of that particular project. Note that the VCS shares some of its
functionality with the SQL Browser, so you will find the look and feel of the VCS more
consistent if you select the same option settings, such as Single Window Mode or Details
view, for both.

Setting up a Project
To use the VCS you need to connect to a database via a session, set up the Supervisor user,
and create a VCS repository. You can open a session using the SQL Browser or from within
the VCS. You can create a repository on a server database, such as Oracle, Sybase, or
Informix, or in an OMNIS data file. You can access a repository using ODBC, but not
EDA/SQL at present. Connecting to your server or OMNIS database is covered earlier in
this manual.

Once you have connected to your database, the VCS operates in the same way, regardless of
where the repository is held. However, if you are using Sybase for your VCS repository,
you must make sure the transaction log has enough capacity to handle your transactions. See
the Sybase documentation for details on the transaction log. You can use the command

dbcc checktable (syslogs)

while you are running the VCS against your repository to check the status of the transaction
log. You must also set the option “select into/bulkcopy” to false with the following remote
procedure call

sp_dboption <db>, “select into/bulkcopy”, false

where <db> is your Sybase database name. The VCS issues an error message and aborts
logon if the target database has the “select into/bulkcopy” option set.

Creating a session
To log on to the VCS you either use an existing session or create a new one.

To create a session

• Select VCS>>Modify Session from the VCS Browser menu bar to display the Session
Browser

• Select New from the Sessions menu

or, if you have a session that is a suitable template for a new one

• Click on an existing session and select Duplicate from the Sessions menu

In either case, a new session appears in the Session Browser. You can now click on your
session and modify it.

Setting up a Project 391

To modify a session

• Select VCS>>Modify Session from the VCS Browser menu bar to display the Session
Browser

• Click on a session and select Modify from the Sessions menu

or

• Double-click on a session to modify it

The Modify Session dialog lets you modify the details of the selected session; it is identical
to the session definition dialog in the SQL Browser. The information you need to supply
depends on the database you want to use; see the Accessing your Database chapter for
details.

Note that to make a session usable with the VCS, you must select the VCS radio button as
the Session type.

• When you have modified the session, click on OK to close the Modify Session dialog

To use an existing session

• Select VCS>>Open from the VCS Browser and select the appropriate session

392 Chapter 14—Version Control

Signing in to the VCS for the first time
Once you have created and opened a session, next you must log on to your database and
sign in to the VCS as the Supervisor user.

The VCS logs on to your database and checks for a VCS repository. If a repository is not
found, the VCS asks you whether to install certain VCS resources or tables. If you click on
the No button, the log on process is aborted. Otherwise, certain VCS tables are installed so
the repository is available for use, and a default user called Supervisor is set up. Once
logged on to the repository the Supervisor has access to an option from the VCS menu titled
“Remove this Repository”, this option will remove all the tables created by the VCS.

To sign in to the VCS for the first time

When you log on to the OMNIS VCS the Sign in window appears. When you logon for the
first time you need to sign in as Supervisor.

• Enter the user name “Supervisor” and the password “password”

Both the user name and password are case sensitive, so make sure both words are in the
correct case, otherwise you will not be able to logon.

• Click on OK

To ensure a secure system, you should change the Supervisor name and password. You can
do this later, but to do it now

• Select VCS>>User Admin from the VCS Browser menu bar

The User Administration window displays one defined user, Supervisor. The fields under
the list give details about the selected user, in this case the Supervisor, including the user's
name, password, phone extension, department, and status.

• Change the “Supervisor” user name to your name and enter a new password

• Enter any more information you wish to store, and click on the Save Changes button

As a Supervisor, you can allow other users to have Supervisor status so they can create and
delete users as well. You will also need to set up the regular users who will check
components in and out, and set up preferences. Both of these activities are described later.

• Click on the Finished button to leave the User Administration window

The final step in setting up your project is to check the components in your application in to
the VCS. You can check in complete OMNIS libraries to include all the classes in those
libraries, you can check in individual classes from any number of different libraries, and you
can check in a whole folder hierarchy containing all the necessary files for your application.

Setting up a Project 393

Once you have checked all the components in, other users can build a local working version
of your library or project using the Build Project option.

Checking in OMNIS Libraries and Classes
All developers working on a project should have access to all the OMNIS classes in your
library. Therefore when you create a new project, you should check in all the necessary
classes in your library, including any system tables, superclasses, and task classes. The
system tables contain information about the fonts, display formats, and so on, used in your
library. In particular if the objects in your library use field styles you should remember to
check in the #STYLES system table. You can use the Browser Options (press F7/Cmnd-7)
to make sure all the classes in your library are displayed in the IDE Browser. In future, if
you change the system tables in your local library you must remember to check them back
into the VCS along with any other classes you may have changed. You should not check in
the #DEBUG system table class that may appear in OMNIS; this exists temporarily for
internal use only.

To check an OMNIS library or individual classes into the VCS

• Open the main IDE Browser and your library containing the OMNIS classes you want
to check in to the VCS

If you want to check in individual OMNIS classes

• Display the classes in your library, either using View>>Down One Level or by double-
clicking on your library icon

• Drag and drop your library or selected classes onto the VCS Browser

or you can

• Select your library or classes and click on the VCS button in the IDE Browser toolbar

Whichever method you choose, the Check in components dialog appears. This dialog lets
you set the check in options for the selected components. If you check in a library all the
classes in the library are checked in automatically.

394 Chapter 14—Version Control

• Select the Add new component radio button, and type “Initial check in” or something
similar in the Check In Notes field

Version Numbers
The version string for each component is currently set to “1”. You can enter a special
version in the Version field if you want to use a different numbering scheme, though this is
not recommended. All the components in the VCS have both a version and a revision
number, each of which is an integer value. The version indicates the major revision or
release of a component and typically applies to all the classes in the library, so it’s
effectively the version of the library. The revision number indicates a relatively minor
change to the component. When you first check in a component, you can assign it a version;
the VCS automatically sets this to 1 and the revision number to 0. Each time you check in a
component, the VCS assigns a new revision, but the version doesn’t change unless you
change it explicitly.

• Click on the Continue button to start checking in

A progress bar shows the number of components added. The VCS queries your database for
a project containing the first component. If one does not exist, the VCS asks you to add a
new project.

• Click on the Add new project button

When all the components are checked in, the project appears in the VCS Browser, with the
same name as your library. You can rename it if you wish from the Project menu.

Setting up a Project 395

Checking in non-OMNIS Components
You can use the OMNIS VCS to control all other types of non-OMNIS components such as
external components, text files or Web pages, PDF files, OMNIS data files, and so on. In
fact you can use the OMNIS VCS to manage any type of project, including ones that don’t
contain OMNIS libraries or classes. To check in non-OMNIS components you use the File
Browser available within the VCS itself.

To check non-OMNIS components into the VCS

• Open the OMNIS VCS

• Select the VCS>>File Browser option from the VCS menu bar

• Locate the folder containing the files your want to check into the VCS

• Drag a folder or selected files onto the VCS Browser

or you can

• Select the folders or files and click on the Check in button in the File Browser toolbar

If you check in a folder, all the files and all subfolders and files within that folder are
checked into the VCS. Note that you can check in an OMNIS library file from the VCS File
Browser. This is OK if you want to manage a library file as a whole, but if you want access
to the classes in the library you should check the library into the VCS from the IDE Browser
as described in the previous section.

396 Chapter 14—Version Control

From hereon, the check in process for non-OMNIS components is exactly the same as for
OMNIS classes, that is, the Check in components dialog appears which lets you set the
check in options for the selected components.

Viewing the Contents of a Project
To see the contents of a project

• Double-click on the project in the VCS Browser

You may find the Details view most useful when viewing the components in a project, since
that view shows information such as the version, the status, who has checked each
component in or out, and so on. In addition, you can sort the contents of your project by
clicking on one of the column headers in the VCS Browser.

The Browser Options lets you specify which components are shown in the VCS Component
Browser.

User Administration 397

To open the VCS Browser Options

• Select View>>Browser options from the VCS menubar

User Administration
User administration involves managing the users of a project and assigning them privileges
for the components in the project. Before developers can start using the project, you need to
add each one as a project user and grant the right privileges for the components they need to
change.

Adding and Removing Users
Once you sign into the project as Supervisor, you can add, alter and remove users of the
project.

To add a new user

• Select VCS>>User Admin

398 Chapter 14—Version Control

The User Administration window displays a list of existing users, with details about the
selected user displayed below it. The Status radio buttons show the three kinds of status a
user can have:

– Observer
can see components only

– Participant
check components out and in, but cannot perform user admin

– Supervisor
can do everything, including adding or deleting users and changing user details, and
checking components out and in

Only a Supervisor can see a user’s password. Only the first Supervisor user can grant
Supervisor status to other users.

• Click on the Add New button

• Add the new user information, including the name and password

• Change the type of user as appropriate; a new user is set to Participant by default

Using the VCS 399

• Click on the Save Changes button to save the new user definition

To change an existing user’s definition

• Select the user in the list

• Change the user details, and click on the Save changes button

Do not change the status of the Supervisor user, particularly if you have only one user with
Supervisor status. If you change the status of the Supervisor user you will no longer be able
to manage the project and its users.

To delete a user

• Select the user in the list and click on the Delete button

• Click on the Finished button to leave the User Administration window

Using the VCS
Once the Supervisor has created a project and set up the users, developers or users can start
using the VCS. In general, you can

– Sign in to the VCS

– Check out one or more components that you need to work on

– Check those components back into the VCS once you have finished with them

Signing in to the VCS
To sign in to the VCS as a user

• Select Tools>>Version Control System from the main OMNIS menubar to open the
VCS Browser

• Select VCS>>Open, or click on the Open VCS button to open the Session Browser

• Click on a session and select Sessions>>Logon to connect to your database

• Enter your user name and password

If you don’t have a valid user name and password, you can sign in as a temporary user by
checking the Observer check box. An observer can view information about the components
stored in a project, but cannot check components in or out, or perform any other VCS tasks.
Alternatively, you can check the Create user check box to create a new user and password,

400 Chapter 14—Version Control

which signs you in with Observer status. A Supervisor then needs to change your user status
to Participant or Supervisor if you want to perform any VCS tasks.

• Click on OK to sign in to the VCS

Checking or Copying out Components
When you check out a component into a local library, it becomes locked in the VCS,
preventing other users from checking it out. A locked component is shown in the VCS with
a lock icon. Alternatively, if you copy out a component it is not locked in the VCS and other
users can check it out if they wish. When copying out a component you can change it in
your local library, but you cannot check it back in to the VCS. In practice, copying out is a
convenient way of viewing components locally without locking them in the VCS.

You can check out or copy out multiple components at the same time, but they must all be
OMNIS classes or all non-OMNIS components during a single check out process.
Components may have the same or different target libraries or folders.

To check out or copy out components

• Display the components in your project by double-clicking on the project in the VCS
Browser, or select Down One Level from the context menu

• Select the components in the VCS Components Browser that you want to check out or
copy out

• Select the Component>>Check Out menu option, or click on the Check out button in
the VCS toolbar

or for OMNIS classes and assuming you can see the IDE Browser

• Drag the classes from the VCS Component window to the appropriate library in the
IDE Browser

Using the VCS 401

• In the Check out dialog, select either Check Out or Copy Out and whether the
component should overwrite an existing one or prompt for a new name (you can change
the default for both these options in the VCS Options)

• If you want, add a description for the checking or copying out process

The Expand Notes button can be pressed if individual notes are required for each
component in the check out group. Once pressed the window shows an entry for each
component.

• Click on Continue

If the VCS cannot locate the original library for an OMNIS class, it will prompt you for a
target library. You should select a library, or skip this component. The VCS may prompt
you to locate a library for further classes. For non-OMNIS components the VCS prompts
you for a destination folder.

If you check out an OMNIS class that has a superclass or belongs to a design task, read-only
copies of the superclass(es) and design task are copied out, assuming the Automatically
copy out related components preference is enabled.

402 Chapter 14—Version Control

In the main IDE Browser, OMNIS classes are shown as checked out with a lock icon.

Checking in or Unlocking Components
When you have finished making changes to a component in your local library, you need to
check it back into the VCS. This unlocks the component in the current VCS repository and
allows other users to make changes or propagate your changes into their local libraries.

Checking in a component releases its lock and makes it available to other users for checking
out. The VCS stores the changes in its repository and updates the revision number. You can
see the current version and revision by clicking on a component and selecting the
Component>>Information menu option.

You can also unlock a component without checking in a new version to make it available
for other users. You could do this if you decide you don’t want to make any changes to a
component after all, or if someone else needs to make immediate changes to a component
that you have checked out and is currently locked. In the latter case, you can unlock the
component, and check it out again when the other user has made their changes. You can
unlock selected components using the Component>>Unlock menu option.

To check in OMNIS classes

• Select the components in your local library in the IDE Browser

• Drag the selected components on to the appropriate project in the VCS Browser

or

• Click on the Check in button on the IDE Browser tool bar

Using the VCS 403

To check in non-OMNIS components

• Open the File Browser from the VCS menu

• Locate the folder containing the files your want to check into the VCS

• Drag a folder or selected files onto the VCS Browser, or select the folders or files and
click on the Check in button in the File Browser toolbar

For all types of component, the Check in window appears which lets you set the check in
choices for the selected components, as already described in the Setting up a Project
section.

You can select one of the following check in modes

– Add new revision
adds the component by incrementing the revision number by one, unlocks the
component, and updates the check in date, time and other status information

– Add as new component
adds the component as a new one, setting the version to 1 and revision to zero, by
default

You must set the mode to Add as new component the first time you check a component into
the VCS.

The After Check in option lets you decide whether to

– Keep checked out
adds the component to the VCS and locks it; in effect, this keeps the component
checked out and available for you to make changes

– Delete local copy
adds the component to the VCS and deletes the local copy

You can enter a new version in the Version field or accept the default, and regardless of the
check in mode, the VCS sets the version to that number.

404 Chapter 14—Version Control

Building Projects
The OMNIS VCS lets you build a project on your local workstation or any other destination
from the components stored in the VCS repository. Building any type of project from the
VCS guarantees that all the components in your local copy are up-to-date. In the context of
OMNIS application design, building a project means creating a library containing up-to-
date classes for you to work on or test; if your application contains multiple libraries, doing
a build from the VCS guarantees that your whole application is up-to-date. You can also
build a project containing non-OMNIS components and reproduce the original folder
hierarchy required in your application. Using the revision labeling features, you can build
previous versions of a library or project for comparison, troubleshooting, or debugging.

When you build a project that contains classes from more than one library, the VCS copies
all the components to a single library by default. However by setting the Build options you
can copy classes to separate libraries, thus maintaining your original library structure.

To change the Build preferences

• Select the VCS>>VCS Options menu item in the VCS Browser

• Click on the Build tab and check the Maintain project structure check box

To build a project

Whether or not you are building to one or more libraries

• Select your project in the VCS Browser

• Select Project>>Build Project, or click on the Build project button on the VCS
Browser tool bar

The Build Manager lets you configure the project build in detail. It contains one line only if
you have chosen to build a project containing OMNIS classes into one library, with the

Using the VCS 405

project name as the library name. If you have set the preference to maintain your library
structure, the Build Manager lists each separate library in the project. If your project
contains non-OMNIS components you can enter the name and path of the target folder.

• Select the library or project

• Make sure the entry in the Build column for the library is set to True, otherwise the
contents of the project will not be included in the build

You can set the following options for a library

– Label
selects the version of the library that you want to build; see the Labels section below

– Private
if true, makes the library private after it is built; making a library private prevents other
users from seeing or changing the contents of a library; for example, the libraries in the
OMNIS\Startup folder are private, which means they are not visible in the OMNIS IDE

– Overwrite Objects
if true, overwrites all the components in the target library or folder, that is, the VCS
removes all the classes in the target library and completely rebuilds the library.
Otherwise if false, the VCS updates only the components that are different from the
current library or project. This is useful for quickly bringing an existing library up-to-
date with the current checked-in classes in the VCS

• Type the path for your library or project in the Target Folder column, or select from
any previous build destinations in the droplist. The Select Folder button can be used to
select a different folder or create a new folder.

If you are building to multiple libraries, repeat this process for all the libraries in the project
that you wish to build. When you have set the options for your libraries or project

• Click on the Build button

The VCS opens the Build Results dialog showing the progress and status of the build.

System Tables
When you build a library, the VCS includes the system tables by default, assuming you have
copied them to your project; they contain library-specific settings such as fonts, input
masks, field styles, and so on. Remember that when you check in a version of the library,
the VCS does not automatically put the system tables into the library; you must specifically
show and select them in the IDE Browser just as you do the other classes in your library.

406 Chapter 14—Version Control

Labels
In long-term projects, the components in your project may undergo many revisions. The
VCS tracks these revisions using labels. You can reproduce a particular version of a library
using the appropriate label. A label is a string of up to fifty characters that you can assign to
a project and each of its components. When a project is complete and you want to release it,
you can assign a release name by labeling the project. You can see the label for a project or
individual component in its Information window.

To label a project

• Select the project in the VCS Browser

• Select the Project>>Label Project menu option, or click on the Label Project button in
the VCS Browser tool bar

• Type in the label and click OK

Once a project has been labeled, the last label assigned is shown in the VCS Project
Browser if the browser is in Details view.

When you build a project, you can use labels to select either the latest version of all the
components, or an older version. You can also check out a specific revision of a component
using its label. See the description of the Check Out process in the section on Managing
Components below.

If you delete a component that has a label, it remains in the VCS. If you build a project
using that label, the VCS finds and includes the component in the build even though you
have deleted it from later revisions of the project. The VCS does not include the component
in any builds or labels that occur after you delete the component. For example, if you label
a project and its components on Monday, delete a component from it on Tuesday, and do a
build on Wednesday using Monday’s label your library will include the component.
However if you do a build on Wednesday using the most recent project label, your library
will not include the component you deleted on Tuesday.

Sharing Components between Projects
You may decide to use a single component in many projects, for example, a custom logon
window, a client file, or a generic start-and-end-date search component. The VCS can
associate a component with libraries in different projects, storing the component only once,
but building it into different libraries when required. You need only revise the component in
one place, rebuild the projects, and the VCS propagates the changes to all the libraries that
contain the component.

You must have Supervisor access or be the owner of a component to associate it with a
project or library.

Using the VCS 407

To associate a component with a project

• Open the project containing the component, and select the component in the VCS
Component window

• Select Component>>Associate, or click on the Associate component button in the VCS
Component window tool bar

The Associate option displays a tree list showing all your open projects.

• Select the project with which you want to associate the component, or you can open a
project in the list and select a particular library

• Click on the Associate button

If the Maintain project structure Build option is not checked, the component is associated
with the single library together with all the other components. Otherwise if the Build option
is enabled, the component is associated with a library of the same name as the one
containing it. If such a library does not exist, it is created automatically.

To delete an associated component in a specific project

• Open the project containing the associated component

• Click on the component, and select Component>>Delete to break its association with
the original component

If the component has a label, it becomes disassociated and a small trash can icon is shown.
If you build a project using a label, the component is still available for the build, even
though the library or project in question may no longer associate with the component.

408 Chapter 14—Version Control

Managing Components
The VCS has an extensive array of component management functions, including

– Granting user privileges for components

– Managing revisions of components

– Deleting and renaming components

Granting User Privileges for Components
If you are the first user to put a component under version control, you are the owner of that
component. To allow other developers access to a component, you must grant them
privileges to it. Without the right privileges, other developers can only view and get
information about a component as Observers. Supervisors have all privileges at all times.

To grant component privileges

• Display the components in your project by double-clicking on the project in the VCS
Browser, or select Down One Level from the context menu

• Select the set of components for which you want to grant the privileges in the VCS
Component window

• Select Component>>Privileges

Managing Components 409

The Assign Component Privileges window lets you assign privileges for specific
components to particular users. You can choose one of the following levels of privilege

– Read/Write
the user may check in, check out, copy out, get information on and build libraries with
components

– Read Only
the user may get information on, build libraries with, and copy out a component into a
local library, but cannot check out the component nor check it back in with changes

– Info Only
the user may get information only about a component

• Select one or more users and one or more components

• Select one of the levels of privilege and click the Set button to grant the privileges

Assigning the Info Only privilege also revokes existing privileges from a user. Info Only is
the default privilege that any user has for a component. The owner of the component must
grant the user, including Supervisors, the Read Only or Read/Write privileges necessary for
building libraries or changing the component.

By default, the owner of a component starts with Read/Write privileges for that component,
and you must have Read/Write privileges to grant privileges for it to other users.

If you select components for which you don’t have Read/Write privileges, the VCS disables
the radio buttons and Set button. If you select components for some of which you have
Read/Write privileges, you can use the radio buttons. The VCS does not however, grant the
privileges to the user(s) on those components for which you do not have Read/Write
privilege.

Revisions
When you first check in a component, the VCS creates the component in its repository and
sets the version to 1 and the revision to zero. Each time you check in a new revision of the
component, the VCS stores the new component and increments its revision number. The
sequence of changes to a component is stored in its revision history.

To see the revision history for a component

• Click on the component in the VCS Component window

• Select the Component>>Revision History menu option, or click on the Revision history
button

410 Chapter 14—Version Control

The Revision History window tells you

– the version string and revision number

– the user who modified the component

– the component name

– and change notes, if any

The revisions for a component are listed in chronological order with the most recent
revision at the top. To delete old revisions of a component you can select a revision and
click on the Delete Selected and Older button to delete the selected revision and all older
revisions below it in the history list.

If you have Read/Write or Read Only privileges for the component, you can copy out the
latest revision of the component from the Revision History window by clicking on the Copy
Out Revision button. A list of currently open libraries appears, so you can choose which one
to copy the component into. Select a library and click on Select.

If a component already exists in the library with the same name as the copy, the VCS
prompts for a new name. Keeping the old name overwrites the existing component; entering
a new one renames the copy.

Component Services
The Component menu in the VCS Component window gives you information about a
component, and lets you rename, delete, or unlock a component. If you select more than one
component, the VCS acts on the first component only.

To get Info about a component, or rename, delete, or unlock one

• Select the component in the VCS Component window

• Select the appropriate menu option from the Component menu, or click on the Info,
Rename, or Delete button in the VCS Component window tool bar

Managing Components 411

Get Information
This window displays the information about the component, including the labels, the
revision state, and the check out history.

Deleting Components
To delete a component, you must own the component and it must be checked in. The Delete
option checks whether the component belongs to more than one library and whether any
labels apply to it. If not, the VCS prompts for confirmation that you want to delete the
component. If it does belong to more than one library, the VCS displays a list of associated
libraries, letting you choose the ones from which to remove the component.

412 Chapter 14—Version Control

Renaming Components
To rename a component, you must own the component and it must be checked in. You can
rename any component in the VCS, but renaming OMNIS classes requires some additional
care because of the potential dependencies of some classes on the class you want to rename.
That is, before you rename a class in the VCS you must change all references to it in any
other classes that refer to the class. You do this by checking out all the relevant classes to
the IDE Browser and using the OMNIS Find and Replace tool.

To rename a class

• Check out the class and any other classes that contain methods which refer to the
component

• Change the name of the component using the IDE Browser, and answer Yes when you
are prompted for whether or not you want to use Find and Replace; this renames the
component and changes all references to it in any other components

• Check in all the components except for the renamed one

• Click on the component in the VCS Component window, and select the
Component>>Unlock menu option to release its lock

• Click on the component again when the VCS Component window has refreshed

• Select the Component>>Rename menu option, or click on the Rename component
button

• Enter a new name in the Rename Component dialog, and click OK

Unlocking Components
You can unlock a locked component by clicking on it and selecting the
Component>>Unlock menu option. A warning message advises you that having done this,
you will not be able to check in a previously checked out version of the component.

Setting VCS Options 413

Setting VCS Options
You can set your individual preferences for the VCS using the VCS>>VCS Options menu
option. You can set Display, Check out, Check in, and Build options in the VCS
Preferences window.

To set your VCS options

• Select the VCS>>VCS Options menu item in the VCS Browser

Display Options
The Refresh after Check In/Out option lets you control whether or not the VCS redraws its
window automatically after checking components in or out. Otherwise, you can refresh the
window manually using the VCS>>Refresh menu option.

Check Out Options
The first option, Default mode is Check Out Modifiable copies, determines whether or not a
component is checked out or copied out by default. The second option, Default
replacements to overwrite existing items, determines whether or not an existing component
in your target library is overwritten when a component is checked out. If this option is not
set, you are prompted to overwrite or rename the component.

The third option, Automatically copy out related components, relates to OMNIS classes that
have superclasses and design tasks. If you have a class that is a subclass of another class,
and you check out the subclass, without this option the superclass(es) will not be copied out;
in this case, you will not see any fields and methods that are contained in the superclass. If
this option is set, read-only copies of the superclass(es) are copied out, as well as the design
task for the classes.

Check In Options
The first option, If Target Component Does Not Exist, controls what happens when you
check in a new component; by default components are added to a project automatically,
otherwise you can force the VCS to prompt you for instructions. The second option, When
Component Version Number Changes, controls revision numbers for new versions of a
component; by default revision numbers are set to zero for new versions, otherwise you can
force the VCS to continue to increment revision numbers regardless of the component
version. Version and revision numbers are described earlier in this chapter.

414 Chapter 14—Version Control

Build Options
The Maintain Project Structure option controls whether or not a build retains the library
structure of the components within a project. If this option is checked, components are built
into separate libraries mirroring the original library structure, otherwise all the components
in a project are built into a single library.

Reports
The VCS has a number of reports available to those with Supervisor status. You can access
them using the VCS>>Reports menu option. Users without supervisor status do not have
access to VCS reports and will find this menu option is grayed out.

To use the VCS reports

• Select the VCS>>Reports menu option in the VCS Browser

The VCS Management Reports dialog lets you select a report. The Parameters pane and
Description field will change depending on the report you click on.

• Select a report and set up its parameters

• Click on the Print button to generate the report

• Select the required destination, and click on OK

Serialization 415

Chapter 15—Deploying
your Application

Once you have developed an application, you will need to deploy it to your end-users.
OMNIS Software provides a runtime version of the OMNIS Studio executable or program,
which contains all the necessary elements to run an application, but does not include the
developer-only parts, such as the OMNIS IDE tools. The runtime version for each platform
is available on the OMNIS Studio CD.

You may find it convenient to deploy your applications, including the OMNIS runtime for
the required platform, using one of the standard Installer products such as InstallVise or
InstallShield.

Before an end-user can run the application, it must be serialized. It is your responsibility to
obtain the required runtime serial numbers from OMNIS Software for distribution with your
application.

Serialization
OMNIS Studio is serialized the first time you run it, rather than during installation. When
you startup OMNIS a serialization dialog appears, prompting you for the your name,
company, and serial number. You can update or re-serialize OMNIS at any time using the
Change Serial Number option in the Tools menu on the main menubar.

Changing the Serialization Dialog
When you deploy your application your end-users need to serialize the OMNIS runtime at
startup, therefore you may want to change the standard OMNIS serialization dialog to suit
your needs. The $serialize() method opens the standard serialization dialog, and also lets
you modify its appearance.

– $serialize([bGenericLogo,cTitle,iBitmapID])
opens the OMNIS serialization dialog; you can pass your own title and bitmap,
otherwise if bGenericLogo is kFalse (the default) the OMNIS orb is displayed, or if
kTrue a generic Serialize logo is displayed; cTitle replaces the default title

416 Chapter 15—Deploying your Application

Do $root.$prefs.$serialize()

; displays the standard dialog

Do $root.$prefs.$serialize(kTrue)

; displays the same dialog but with a key bitmap replacing the OMNIS
one

Index 417

Index
variables, 110
#BFORMS, 93
#DFORMS, 93
#EXTCOMPLIBS, 93, 181
#FD, 103
#FT, 104
#ICONS, 93, 357, 361
#MARFONTS, 93
#MASKS, 93
#MAWFONTS, 93
#NFORMS, 93
#NULL, 107
#O2RFONTS, 93
#PASSWORDS, 93, 379
#STYLES, 93, 393
#TFORMS, 93
#WIRFONTS, 93
#WIWFONTS, 93

$accumulate(), 268
$appendfile, 266
$canclose(), 264
$cangeneratepages, 263
$cankeepopen, 263
$cdevice, 262, 269
$centuryrange, 105
$charsperinch, 266
$charsperline, 266
$checkbreak(), 268
$classes, 39
$close(), 263
$construct(), 106, 125, 190, 199
$contextmenu, 213
$contextobj, 213
$copies, 268
$definefromsqlclass() method, 134, 136, 138
$destruct(), 125, 190, 199
$devices, 262
$dotoolmethod(), 298
$editionfile, 265
$effect, 210, 314
$ejectpage(), 268
$endpage(), 268
$endprint(), 261, 268

$event(), 17, 126, 190, 199
$exportformat, 373
$exportnullsasempty, 366
$flush(), 265
$generatepages, 266
$getparam(), 283
$hascurrlangnationalsortorder, 387
$height, 272
$hideuntilcomplete, 266
$iconid, 262

Search order, 361
$ident, 262
$inst, 271
$isopen, 263
$istext, 266
$istextbased, 263
$language, 387
$left, 272
$libs, 38
$linesperinch, 266
$linesperpage, 266
$mainfile, 373
$mainlist, 373
$name, 262
$newlanguage, 387
$noscale, 173
$open(), 263
$openjobsetup(), 269
$orientation, 267
$pages, 265
$paper, 267
$paperlength, 267
$paperwidth, 267
$passwordchar, 168
$portdatabits, 267
$porthandshake, 267
$portname, 267
$portparity, 267
$portspeed, 267
$portstopbits, 267
$poshorzpage, 272
$posmode, 271
$possectident, 272
$posvertpage, 272

418 Index

$print(), 126, 270
$printfile, 265
$printrecord(), 261, 268
$printsection(), 268
$printtotals(), 268
$reportdataname, 265
$reportfield, 265
$reportfile, 96, 265
$restrictpagewidth, 266
$root, 37
$scale, 268
$senddata(), 264, 283
$sendformfeed, 266
$sendtext(), 264, 283
$serialize(), 415
$serialize() method, 97
$setparam(), 283
$setup() for wizards, 352
$showascheckedout, 89
$skipsection(), 268
$startpage(), 268
$title, 262
$toolbars, 39
$top, 272
$userlevel, 379
$visible, 262
$waitforuser, 266
$welcome(), 356
$width, 272
$windowprefs, 266
$windows, 39

% numeric variables, 113
%% string variables, 113

3D Rect objects, 176

About option, 69
about property, 181
Accessing your database, 329
actedata property, 170
Action properties, 156
active property, 165, 169
ActiveX controls, 178
actnomethod property, 170
Ad hoc reports, 230, 285

Adding calculated fields, 295
Adding columns or fields, 289
Creating ad hoc reports, 285

Logic, 294
Modifying, 296
Multi-line queries, 294
Queries, 292
Re-using, 298
Sort fields, 290
Templates, 297

Add line to list command, 304
Administration for users, 397
Align objects option, 186
align property, 167, 244
aligntogrid property, 156
allowdrag property, 221
allowresize property, 221
Alt Shortcuts Keys under Windows, 205
ANSI character set, 374
Appearance preferences, 95
ASCII character set, 374
Associating components, 406
autofind property, 168, 245
autotablen property, 168, 175

backcolor property, 167, 172, 173
Background external components, 185
Background object properties, 177
Background objects, 176, 245
backpattern property, 167, 172
balloonson property, 95, 215
Binary data type, 107
Boolean data type, 102
bordercolor property, 167
bringinfront property, 157
Browser, 23

Changing to details view, 27
Closing a library, 25
Creating a new class, 86
Creating a new library, 24, 77
Creating menu classes, 197
Creating toolbar classes, 217
Hiding or showing classes in the Browser,

29
Opening an existing library, 24
Saving the Browser setup, 30
Viewing properties of a library, 78
Viewing report properties, 237
Viewing the classes in a library, 26

Build export format list command, 374
Build list from file command, 304
Build list from select table command, 304

Index 419

Building projects, 404
Button area fields, 170
Button areas, 159
buttonmode property, 170
buttonstyle property, 170

C++ controls, 178
Calculate command, 53
calculated property, 165, 169, 243, 279
calculation property, 307
Calculations

Entry and display fields, 169
Can Be Null field option, 107
canfocus preference, 82
Cannot Be Null field option, 107
cascade property, 202
Catalog, 52

Creating a report field, 241
Creating window fields, 163
Entering sort fields, 251
Selecting a variable from the Catalog, 53
Viewing variables, 115

cdrom property, 95
Century range for dates, 105
centuryrang, 82
Change user password command, 381
Changing the Browser to Details view, 27
Character data type, 100
Character Set Translation, 374
Check box fields, 169
Check box toolbar control, 218
Check boxes, 160
Check lists, 161, 302, 315
checked property, 202, 222
Checking in components, 402
Checking in non-OMNIS components, 395
Checking in OMNIS classes, 393
Checking out VCS components, 400
Class Browser

Printing, 87
Class Methods, 118
Class methods option, 188
Class names, 86
Class properties, 88

classtype, 90
createdate, 90
designtaskname, 89
disksize, 90
external, 89

moddate, 90
Viewing properties, 88

Class variables, 110
Classes, 84

Adding classes to the Component Library,
346

Changing the default class, 33
Code, 85
Component Store, 32
Copying a class, 86
Creating a new class, 86
Creating a new class, 85
File, 84
Locking classes, 378
Menu, 84
Modifying default classes, 344
Naming or renaming a class, 86
Object, 85
Report, 85
Schema, 84
Search, 84
Table, 84
Task, 85
Toolbar, 85
Window, 84

Clear class variables command, 110, 114
clickbehind property, 157
Clipboard report device, 258
Closing a library, 25, 78
Cmnd-T shortcut key, 150
Code classes, 129

Creating a code class, 129
Entering code class methods, 129

Color picker toolbar control, 219
Color pickers on toolbars, 224
columns property, 310
Combo box toolbar control, 218
Combo boxes, 160, 301, 313
Combo boxes on toolbars, 223
Commands, 121
Comment command, 121
commentcolor option, 131
commentstyle option, 131
Compatibility with OMNIS 7, 389
Complex grids, 161, 302, 309

Horizontal header section, 309
Main header section, 309
Vertical header section, 309

Component Library, 343

420 Index

Adding classes and fields, 346
Closing the Component Library, 346
Creating your own wizards, 350
Modifying classes and fields, 344
Opening the Component Library, 343

Component Store, 31
Adding a toolbar control, 219
Adding objects to the Component Store,

33
Changing the default class, 33
Creating a dropdown list, 305
Creating a new class, 85
Creating a report field, 241
Creating background objects, 245
Creating check lists, 315
Creating combo boxes, 313
Creating complex grids, 309
Creating file classes, 139
Creating list boxes, 306
Creating menu classes, 197
Creating popup lists, 314
Creating schema classes, 134
Creating search classes, 142
Creating table classes, 138
Creating toolbar classes, 217
Creating tree lists, 312
Creating window fields, 162
Modifying the Component Library, 343
Opening, 31
Showing superclasses and subwindows,

354
Component Store classes, 32
componentctrl property, 181
componenticon property, 354
componentlib property, 181
Components

Associating with a project, 406
Checking in or unlocking, 402
Checking or copying out, 400
Deleting, 411
Managing, 408
Privileges, 408
Renaming, 412
Sharing components between projects, 406
Unlocking manually, 412

con(), 295
con() function, 108
Connecting to your database, 330
Construct methods, 125

Construct parameters, 125
Constructor method

See $construct(), 190
Container classes, 84
Context menus, 22, 193, 212
contextmenu property, 156, 166, 212
Context-Sensitive Help, 66
Converting old OMNISPIC data files, 362
copies property, 239
Copying a class from one library to another,

86
Copying out VCS Components, 400
CRB, 133
Creating a code class, 129
Creating a new library, 77
Creating a new menu, 197
Creating a new project, 393
Creating a new report, 235
Creating file classes, 139
Creating menus using wizards, 194
Creating reports using wizards, 231
Creating schema classes, 134
Creating search classes, 142
Creating table classes, 138
Creating toolbar classes, 217
Creating window classes, 152
Creating windows using wizards, 144
ctrlkeywordcolor option, 131
ctrlkeywordstyle option, 131
Ctrl-T shortcut key, 150
Current record buffer, 133
currentpage property, 172
currenttab property, 171
Cursor, 159, 240
Cursor properties, 364
Cursors

Custom, 363
Hot spot, 364

Custom cursors, 363
Custom methods, 120
Custom printing devices, 280
Customizing the method editor, 130

DAMs, 329
Data access wizards, 337
Data classes, 84, 132

Current record buffer, 133
Data type mapping, 133
Data types, 133

Index 421

File classes, 139
Query classes, 136
Schema classes, 134
Search classes, 142
Table classes, 138

Data File Browser, 55
Creating an OMNIS data file, 56
Opening an existing data file, 56
Viewing data slots, 57

Data formats for importing and exporting
data, 365

Data grids, 161, 301
Data report field, 240
Data type mapping, 133
Data Types, 99, 133

Binary, 107
Boolean, 102
Character, 100
Date time, 102
Field reference, 107
Item reference, 107
List, 106
National, 100
Number, 101
Object, 106
Picture, 106
Row, 106
Sequence, 105

Database
Connecting, 330
Inserting data, 336
Logging on, 330
Printing an object list, 335
SQL forms, 334
Viewing data, 336

dataname property, 165, 166, 243, 306
Date time data types, 102

Date and time calculations, 104
Date ranges, 105
Long date and time, 104
Short date, 103
Short time, 104

DDE, 60
DDE/Publisher report device, 260
Debugger

Shortcut keys, 75
Default classes, 33, 91

Startup task, 91
System tables, 91

Default library name, 83
Default templates, 151, 197, 234
defaultlines property, 305, 306
defaultname property, 82
defaultnodeicon property, 312
Define list command, 303, 304
Define list from SQL class command, 304
Delete objects option, 186
Delete Selected and Older, 410
Delimited (commas) export format, 366
Delimited (tabs) export format, 366
Deployment, 415
Descending sort option, 252
Design grid, 189
Design tasks

Checking out, 413
designscreenaid property, 95
designtaskname, 113
Desktop submenu, 58
Destruct methods, 125
Destructor method

See $destruct(), 190
Devices for printing, 256
Disk report device, 258
disksize property, 80
Display fields, 169
ditherbackground property, 173
Do code method command, 109, 129
Do command, 15, 107, 118
Do default command, 270

in $print() method, 275
Do method command, 109, 121, 129
Do code method, 200
Do code method command, 227
Docking areas, 228
dockingedge property, 156
dragborder property, 167
dragiconid property, 168
dragmode property, 168
dragrange property, 168
Dropdown list toolbar control, 218
Dropdown lists, 160, 300, 305
Droplists on toolbars, 223
dropmode property, 157, 168
dupblanks property, 244

edgefloat property, 154, 167
Edit menu, 59

DDE and OLE, 60

422 Index

Find and Replace, 60
Editing a method, 124
effect property, 154, 168
E-mail object class, 324
E-Mail Wizard, 320
Empty values, 107
enabled property, 165, 169, 202, 221, 222
enablemenuandtoolbars property, 157
Enclose exported text in quotes command,

366
End export command, 372
End Import command, 371
End of report section, 246
End print command, 260
Enter data mode, 158
enterable property, 311
Entry fields, 159, 164
evAfter, 126
evBefore, 126
Event method

See $event(), 190
Event methods, 126
Events, 17
evOpenContextMenu, 213
expandcollapseicon property, 312
Export data command, 372
exportedquotes preference, 82, 366
exportformat property, 239
Exporting data, 367

Data formats, 365
From list and row variables, 372

Exporting data from a report, 373
exportnullsasempty property, 95
extendable property, 311
extension property, 80
External components, 185

Background components, 185
HTML printing device, 280
HTML report objects, 284
Loading or registering, 183
Placing them on a window, 180
Preloaded status, 182
Showing in the Component Store, 181
System table, 181
Using, 178
Writing your own, 185

External components dialog, 182

Field list option, 188

Field methods option, 188
Field numbering and tab order, 174
Field properties, 163
Field reference data type, 107
Fields

Action properties, 168
Adding fields to the Component Library,

346
Adding tooltips, 175
Appearance properties, 167
Calculations, 169
Changing field properties, 163
Display and inactive fields, 169
Entry fields, 164
General properties, 165
Local fields, 169
Methods, 190
Modifying default fields, 344
Window field types, 158

fieldstyle property, 167, 244
File classes, 139

Creating file classes, 139
File menu, 58
File Menu Template, 194
File report device, 259
Find and Replace, 60
Find And Replace Log, 61
fiscalyearend preference, 82
Flag variable, 121
floating property, 243, 244
Follow start mode, 254
Font list toolbar control, 219
Font lists on toolbars, 223
font property, 167, 244
Font size list toolbar control, 219
fontextra property, 244
fontscale preference, 82
fontsize property, 167, 244
fontstyle property, 167, 203, 244
Footers for reports, 248
For loops, 121
forecolor property, 167, 172
Foreground objects, 176
Format strings, 108
formatmode property, 166, 244
formatstring property, 166, 244
freesize property, 80
Frombottommarg start mode, 254
Fromend start mode, 254

Index 423

Fromtop start mode, 254
Fromtopmarg start mode, 254
FTP object class, 325
FTP Wizard, 320
fullscreen property, 96

General preferences, 95
Get Info, 411
Global hash variables, 110
Graphic objects, 177
Graphs, 175, 184
Grid fields, 299, 305
Grids

Getting data from a grid field, 315
Group box fields, 174
Group boxes, 161
Group objects option, 186
GUI classes, 84

Hash variables, 110
hasmenus property, 156, 208
hasstatusbar property, 156, 215
Headed list boxes, 160, 301
headerborder property, 310
headerfillcolor property, 310
headerlinestyle property, 310
Headers for reports, 248
height property, 156, 165, 243
Help, 66

Context-Sensitive Help, 66
What’s This?, 69

Help tips option, 36
helpbaron property, 95, 215
helpfile property, 156, 203, 221
helpfoldername preference, 83
helpfont property, 95, 215
helpid property, 166
helptext property, 203, 215
Hierarchical menus, 192, 207
History, Revision, 409
Hold Updates option, 36
horzextend property, 243
horzgrid property, 156
horzscroll property, 167
horzslide property, 243
Hot spot for cursors, 364
hscale preference, 82
HTML device, 280

Parameters, 281

Sending text or data, 283
HTML report device, 259
HTML report objects, 284
HTTP object class, 326
HTTP Wizard, 320

Icon arrays, 161, 302
Icon editor, 357, 359

Creating your own icons, 357
Editing an icon data file, 360
Embedded system colors, 361
Transparent colors, 362

iconid property, 170, 172, 203, 357
Icons, 357

Creating your own, 357
Full page icons, 358
in menus, 203
Storing in a library, 361

ident property, 165, 243
ignoreExternal property, 80
imagenoroom property, 172
Import data command, 371
Import field from file command, 371
Import field from port command, 371
Importing and exporting data, 365

Build export format list command, 374
Character set translation, 374

Importing data, 369
Data formats, 365
List and row variables, 371

Inactive fields, 169
inactnorec property, 170
Inheritance, 18
Inheritance Tree, 45

Viewing the Inheritance Tree, 45
Inherited methods, 127
Inherited variables, 127
Inherited variables and methods

Opening the methods for a superclass, 128
Overriding an inherited method, 127
Overriding an inherited variable, 127

inheritedcolor property, 95
Initial value of variables, 114
initialdockingarea property, 221
Input masks, 108
inputmask property, 166
Install menu command, 192
Install toolbar command, 216, 228
Installers, 415

424 Index

Installing a menu class, 196
Installing toolbars, 228
Instance variables, 109
Interface Manager, 50
Internet Classes, 318
islabel property, 238, 277
islist property, 239
isnull() function, 108
isprivate property, 378
isprivate property, 80
issubwindow property, 355
issupercomponent property, 354
Item reference data type, 107

Java Beans, 178
jst() function, 108

Using in list fields, 307

kColor3Dface, 361
kColor3Dhilite, 361
kColor3Dshadow, 361
kColorWindow, 361
kColorWindowText, 361
kDefaultBorder, 210, 314
keepclicks property, 157
kEXuser, 366
keyevents preference, 82
keywordcolor option, 131
keywordstyle option, 131

Label objects, 176, 177
Label reports, 276
labelcount property, 238, 277
labelwidth property, 238, 277
language property, 95
left property, 156, 165, 243
leftmargin property, 173
Libraries, 10, 76

Checking libraries, 375
Classes, 84
Closing a library, 78
Creating a new library, 77
Default name, 83
Library tools, 342
Localization, 381
Locking classes, 378
Multi-library projects, 381
Opening a library, 77
Private libraries, 378

Properties and preferences, 78
Retokenizing libraries, 376
Shortcut for opening, 70

Libraries and Classes, 76
Class properties, 88
Default classes, 91

Library
retokenizimg, 376

Library tools, 342
Checking libraries, 375
Component Library, 343
Icon editor, 357
Importing and exporting data, 365
Passwords and security, 379
Private libraries, 378
Retokenizing libraries, 376

Line objects, 176
Line pickers on toolbars, 224
Line style picker toolbar control, 219
linestyle property, 168
List and grid window fields, 299
List boxes, 160, 301, 306
List data type, 106
List fields, 299, 305
List variables, 303

Exporting data, 372
Importing and exporting data, 371

listheight property, 314
listname property, 313
Lists

Building Your list, 304
Creating list and grid fields, 305
Creating list variables, 303
Current list, 304
Defining your list, 304
Getting data from a list field, 315
Local fields, 316
Searching, 317
Shortcut keys, 73
Types of list and grid fields, 300

Lists and grids
List variables, 303
Local fields, 316
Types of field, 300

Load from list command, 316
loadadhocs property, 95
Local fields, 169
local property, 166, 316
Local variables, 109, 113

Index 425

Localization
Localizing OMNIS, 384
Localizing your application, 381

Lock objects option, 186
log() function, 121
Logging on, 330

macshortcutkey property, 202
mainfile property, 239
mainlist property, 239
Maintain Project Structure option, 414
Managing components, 408
Masked entry fields, 159
Memory report device, 260
Menu Classes, 192
Menu classes, 210, 215, 314

Context menus, 212
Creating a new menu, 197
Creating menus using wizards, 194
Default template or wizard, 197
Hierarchical menus, 207
Icons, 203
Installing menus from design mode, 196
Menu line and class methods, 199
Menu types, 192
Passwords and menu access, 213
Popup menus, 210
Properties, 200
Shortcut keys, 204
Status bar help, 215
Window menus, 208

Menu editor
Adding a shortcut key, 204

Menu properties, 200
Menu types, 192
Menu Wizard, 194
Menu wizards, 194
menuedge property, 156, 208
menuname property, 210
menunames property, 156
Menus

Controlling access using methods, 380
Restricting access, 380
Standard dropdown menus, 192
Standard menus and toolbars, 58

Menus and code classes, 200
Messages, 15
Method Editor, 46, 98, 118

Adding a method, 119

Adding a method to a report class, 261
Adding a method to a report field, 261
Adding a method to a toolbar class, 227
Adding a tool method, 226
Adding methods to a table class, 139
Adding variables, 111
Command palette, 50
Creating a list variable, 303
Customizing the method editor, 130
Menubar and toolbar, 48
Method names and definition, 49
Shortcut keys, 75
Variables panes, 49
Watch variables pane, 49

Methods, 12, 98, 118
Adding a method, 119
Adding code to a method, 120
Adding to a window class, 190
Adding to a window field, 190
Class methods, 118
Comments, 121
Construct methods, 125
Controlling access using methods, 380
Creating a list field method, 315
Custom methods, 120
Destruct methods, 125
Editing a method, 124
Entering code class methods, 129
Entering methods from a text editor, 123
Entering methods from the keyboard, 121
Entering methods using point and click,

123
Event methods, 126
Field methods, 118
Inherited methods, 127
Line methods, 118
Menu class methods, 199
Menu line methods, 199
Menus and code classes, 200
Programming constructs, 121
Renaming, 124
Reordering in the method editor, 124
Report and Field Methods, 260
Tool and class methods, 226
Tool methods, 118
Toolbars and code classes, 227
Viewing class methods, 118
Viewing field methods, 119
Window and field methods, 190

426 Index

minimizeiconid property, 96
modal windows, 157
Modeless enter data, 158
modelessdata property, 157
Modify class command, 354
Modify report fields, 162
Modifying windows and fields, 186

Moving and sizing objects, 189
Using the grid, 189

mouseevents preference, 82
Moving and sizing objects, 189
Multi-line entry fields, 159
multipleselect property, 308, 311
multirow property, 172

name property, 80, 165, 202, 222, 243
Naming a class, 86
Narrow Sections option, 249
natcmp() function, 385
National data type, 100
negallowed property, 166
negbrackets property, 244
Net Classes

Net objects, 321
Net object class

printing methods, 322
variables and methods, 322

Net object classes
Using the, 328

Net objects API, 321
Net window wizards, 319
Net Wizard, 319
New page sort option, 252
newlanguage property, 95
Newpage option, 254
nodeiconspos property, 312
noflash property, 170
nogray property, 170
nolineifempty property, 243
Non-OMNIS components

Checking in, 395
noomnisdata property, 95
Nopage option, 253
noreload property, 243, 244
noscale property, 245
nosecifempty property, 244
nosetpropertycolor property, 95
Notation, 14

Reports, 262

Notation Inspector, 37, 44
$root, 37
Copying the notation for an object, 40
Expanding a node, 38
Finding a class, 39
Make root button, 40
Notation search button, 41
Toolbar, 40
Viewing methods, 43
Viewing properties, 43
Viewing the contents of your library, 38

Null values, 107
Number data type, 101

Floating point numbers, 101

Object data type, 106
Object Orientation, 11

Events, 17
Inheritance, 18
Instances and classes, 13
Libraries and classes, 11
Messages, 15
Methods, 12
Notation, 14
Properties, 12
Tasks, 14
Variables, 13

objtype property, 165, 222, 243
oEMail object class, 324
oFTP object class, 325
oFTPInherited object class, 325
oHTTP object class, 326
Old OMNISPIC data files, 362
OLE, 60
OMNIS

Commands, 121
Localization, 384
Object Orientation, 11
What is OMNIS Studio, 9

OMNIS Applications, 10
OMNIS data transfer export format, 366
OMNIS executable, 10
OMNIS Form Wizard, 144
OMNIS Graphs, 175
OMNIS Help, 66
OMNIS libraries, 10
OMNIS Preferences, 94

Methods, 97
OMNIS Report Wizard, 231

Index 427

OMNIS Studio
Introduction, 9

OMNIS tools, 19
Browser, 23
Catalog, 52
Component Store, 31
Context menus, 22
Method Editor, 46
Notation Inspector, 37
View menus, 22

OMNIS VCS, 76, 388
OMNISPIC.DF1, 357
On command, 126
One field per line export format, 366
Open window instance command, 121, 199,

226, 352
Open window option, 189
Opening a library, 77
Opening a window class, 150
Opening the VCS, 389
Options, 94, 413
Order objects option, 187
order property, 165, 174, 316
oRealSocket object class, 327
orientation property, 239
oSocket object class, 327
oSpy object class, 328
Oval objects, 176
overlap property, 173
Owner of VCS project, 408

Page footer section, 246
Page header section, 246
Page layout, 273
Page pane fields, 172
Page setup, 270
Page Setup preferences, 97
Page setup properties, 230, 239
pagecount property, 172
Paged panes, 161
pagefooter property, 248
pageheader property, 248
pagemode property, 253
pagesetupdata property, 239
pagespacing property, 254
paper property, 239
paperlength property, 239
paperwidth property, 239
Parameter variables, 109, 113

Reordering in the method editor, 113
Password entry fields, 168
Passwords and menu access, 213
Passwords and security, 379

Controlling access using methods, 380
Restricting access to menus and toolbars,

380
Setting up passwords, 379

Paste From File menu option, 60
pathname property, 80
Pattern picker toolbar control, 219
Pattern pickers on toolbars, 224
Picture data type, 106
Picture fields, 160, 173
Picture report field, 240
POP3, 324
Popup list toolbar control, 218
Popup lists, 160, 171, 300, 314
Popup lists on toolbars, 223
Popup menu toolbar control, 218
Popup menus, 160, 171, 193, 210
Popup menus on toolbars, 223
Port report device, 258
Position report section, 240
Positioning

Report objects, 271
Positioning section, 246
Positioning sections, 255
Preferences, 413
Preferences, Library

Viewing library preferences, 81
Prepare for export to file command, 372
Prepare for export to port command, 372
Prepare for import from file command, 371
Prepare for print command, 260
Preview report device, 257
Print Destination submenu, 58
Print device notation, 262

Methods, 263
Print record command, 260
Print report command, 200, 226, 260
Print report from disk command, 258
Print report from memory command, 260
Print Top menu option, 65
Printer report device, 257
Printing a report class, 234
Printing errors, 276
Printing preferences, 265
Printing Reports, 255

428 Index

Privileges, 408
Projects

Building, 404
Creating a session, 390
Owners, 408
Setting up, 390
Viewing the contents of a project, 396

promptforreorg property, 95
Properties, 12

Action, 168
Changing object properties, 35
Entry fields, 163
Field appearance properties, 167
Field text properties, 167
General field properties, 165
of a library, 78
of a menu, 200
of a window, 155
of background objects, 177
of pushbuttons and button areas, 170
Report properties, 237
Sorting by name in the Property Manager,

36
Tab pane fields, 171
Tab strip fields, 172
Toolbar, 220
Toolbar controls, 222
Window fields, 158

Properties option, 188
Property Manager, 34, 44

Adding a menu line shortcut key, 206
Adding a menu title shortcut key, 205
Adding a shortcut key, 204
Adding an icon to a toolbar button, 224
Changing object properties, 35
Context menu, 36
Creating a page footer, 248
Creating a page header, 248
Enabling a report section, 247
Entering a tooltip, 225
Modifying report properties, 237
Shortcut keys, 74
Showing Help tips, 36
Sorting properties by name, 36
Viewing library preferences, 81
Viewing the properties of a field, 163

Push button picker modes, 171
Pushbutton fields, 170
Pushbutton toolbar control, 218

Pushbuttons, 159

Query classes, 136
Creating query classes, 136

Radio button fields, 169
Radio button toolbar control, 218
Radio buttons, 159
recentfiles property, 95
Record section, 246
Record Sequencing Number (RSN), 105
recordspacing property, 238, 255
Rectangle objects, 176
Renaming a class, 86
Repeat loops, 121
repeatfactor property, 238, 277
Report and Field Methods, 260
Report classes, 230
Report classes

Background objects, 245
Creating a new report, 235
Creating reports using wizards, 231
Default template or wizard, 234
Labels, 276
Printing reports, 255
Printing reports from design mode, 234
Report and Field Methods, 260
Report field types and properties, 240
Report properties, 237
Section properties and positioning, 253
Sections, 246
Sorting and Subtotaling, 250

Report destination dialog, 256
Report devices, 256

Clipboard, 258
DDE/Publisher, 260
Disk, 258
File, 259
HTML, 259
Memory, 260
Port, 258
Preview, 257
Printer, 257
Screen, 257

Report editor, 236
Report field methods, 270
Report field types and properties, 240
Report fields

Properties, 243

Index 429

Text properties, 244
Report heading section, 246
Report instance methods, 268
Report object positioning, 271
Report properties, 237
Report section methods, 270
Report wizards, 231
Reports

Background objects, 245
Calculated fields, 279
Current device, 262
Excluding empty lines, 278
Foreground objects, 245
HTML device, 280
Notation, 262
Page mode, 253
Page setup properties, 239
Positioning sections, 255
Print device notation, 262
Printing preferences, 265
Record spacing, 255
Report tools, 236
Sections, 246
See also Ad hoc reports, 285
Start mode, 254
Subtotal sections, 252

Reports in the VCS, 414
Reports menu, 285
Revisions, 409

Delete Selected and Older, 410
Right-clicking

Context menus, 22
rmouseevents preference, 82
rnd() function, 102
Round rectangle objects, 176
Row data type, 106
Row variables

Exporting data, 372
Importing and exporting data, 371

Rulers option, 188
runtimepropertycolor property, 95
Runtimes, 415

Saving the Browser setup, 30
scale property, 239
Schema classes, 134, 334

Creating schemas, 134
Scope

Rescoping a variable, 114

Scope of variables, 108
Screen report device, 257
Screen report fields, 162
screencoordinates preference, 82
Scroll box fields, 174
Scroll boxes, 162
Search classes, 142

Creating search classes, 142
Searching in List and Grid Fields, 317
Section properties

Page Mode, 253
Record spacing, 255
Start Mode, 254

Section properties and positioning, 253
Sections on a report, 236
Sections, position marker, 253
Sections, Report, 246
selectedtabcolor property, 173
selectedtabtextcolor property, 173
sensitivefieldnames preference, 82
sensitivefilenames preference, 82
Separator toolbar control, 218
Sequence data type, 105
Serialization

Changing the dialog, 415
Session Manager, 330
Session Wizard, 337
Session, Creating a, 390
Sessions, 330
Set current list command, 303, 304
Set reference command, 107, 352
setpropertycolor property, 95
Setting up a project, 390
Setting VCS options, 413
Shape fields, 160, 174
shared property, 80
sharedpictures preference, 82
Shortcut keys, 204

Alt keys under Windows, 205
Shortcut keys and mouse usage, 70
Shortcut keys and mouse useage

Container fields, 74
General, 71
Help, 72
Launching OMNIS & opening libraries, 70
Lists, 73
Method editor and debugger, 75
Moving and sizing objects, 73
OMNIS Tools, 71

430 Index

Property Manager, 74
Window and report design, 72

Show Component Library In Browser menu
option, 343

Show field numbers option, 188
showcommands property, 157
showcommas property, 244
showedge property, 173
showfocus property, 172
showgrid property, 156
showheader property, 310
showimages property, 172
shownames property, 239
shownodeicons property, 312
shownulls property, 168, 245
showtoolbartips property, 95, 175, 225
showwindowtips property, 95, 175
Signing in to the VCS, 392, 399
sin() function, 121
sizetogrid property, 156
SMTP, 324
Sockets, 327
Sort by Property Name option, 36
Sort fields in a report, 250
Sorting reports, 250
SQL Browser, 329

Enabling Your Client Application, 333
Viewing and Inserting Data, 336

SQL classes
Creating automatically, 139

SQL Form Wizard, 144
SQL form wizards, 334
SQL methods, 134
SQL Object Browser

Creating SQL classes automatically, 139
SQL Report Wizard, 231
sqlclassname property, 138
sqlstripspaces preference, 82
Standard dropdown menus, 192
Standard menus and toolbars, 58

Edit menu, 59
File menu, 58
Tools menu, 64
View menu, 62
Window menu, 65

startfield property, 156
Starting OMNIS Studio, 20
startmode property, 254, 278
startspacing property, 254, 278

Startup task, 91
Stopping this running, 356

startuptaskname preference, 82
Status bar help for menus, 215
statusedge property, 156
statusevents preference, 82
stickywindowmenubar property, 95
String grids, 161, 301
stringcolor option, 131
stringstyle option, 131
style property, 154
style97 property, 96
styleplatform preference, 83
Subclasses, 127
Subtotal heading 1 to 9 sections, 246
Subtotal heading section, 246, 252
Subtotal sections, 252
Subtotals in reports, 250
Subtotals level 1 to 9 sections, 246, 252
Subtotals sort option, 252
Subwindow class option, 188
Subwindows, 160
subwindowstyle property, 167
Superclass option, 188
Superclasses, 127

Checking out, 413
sys() function, 121
System colors, 361
System tables, 91, 393, 405

“#” prefix, 91
Viewing system tables, 92

Tab order, 174
Tab pane fields, 171
Tab panes, 161
Tab strip fields, 172
Tab strips, 161
tabcaption property, 172
tabcolor property, 173
tabcount property, 171
Table classes, 138

Adding methods to a table class, 139
Creating tables, 138

taborient property, 172
tabs property, 173
tabstyle property, 172
tabtextcolor property, 173
tabtooltip property, 172, 175
Task variables, 110, 113

Index 431

taskbar property, 96
TCP Wizard, 320
TCP/IP object class, 327
Testspace option, 254
Text objects, 176, 177
text property, 165, 169, 170, 202, 222, 243,

279
textcolor property, 167, 244
title property, 156, 221
Tokenization, 376
Tool and class methods, 226
Tool methods, 226
Tool properties, 222

Combo boxes, droplists, and popup lists,
223

Font Lists, 223
Line, color, and pattern pickers, 224
Popup menus, 223
Tool icons, 224

Toolbar class editor, 220
Toolbar classes, 216

Creating toolbar classes, 217
Docking areas, 228
Installing, 228
Tool and class methods, 226
Tool properties, 222
Toolbar controls, 218
Toolbar Properties, 220

Toolbar controls, 218
Toolbar icons, 224
Toolbar Properties, 220
toolbarname property, 156
toolbarnames property, 156
toolbarpos property, 156, 228
Toolbars

Restricting access, 380
Standard menus and toolbars, 58
Tooltips, 225

Toolbars and Code Classes, 227
Toolbars menu option, 63
toolobjselectcolor property, 95
Tools

Interface Manager, 50
Tools menu, 64
tooltip property, 166, 175, 222
Tooltips, 175, 225
top property, 156, 165, 243
totalmode property, 244, 252
Totals section, 246, 252

translateoutput property, 95
Transparent colors, 362
Tree lists, 161, 302, 312
treedefaultlines property, 313
Troubleshooting

Database access, 341

uniquefieldnames preference, 82
Unlocking components, 402, 412
unqindex property, 166
Update files command, 105
Upper case sort option, 252
uppercase property, 168
Use file and field names option, 377
Use file and field tokens option, 377
Use file names and field tokens option, 377
usecms property, 95, 239
User Administration, 397
User privileges, 408
userecspacing property, 238, 255
userlevel property, 80
USERPIC.DF1, 357
Users

Adding and managing users, 397
users property, 202, 213, 221, 222
Using the grid, 189

v3events preference, 82
Variable context menu, 114
Variable Declaration and Scope, 108
Variable tips, 115
variablecolor option, 131
Variables, 98, 108

Adding a variable, 111
Adding local variables, 113
Adding parameter variables, 113
Adding task variables, 113
Class variables, 110
Data types, 99
Hash variables, 110
Inherited variables, 127
Initial values, 114
Instance variables, 109
List variables, 303
Local variables, 109
Naming, 112
Parameter variables, 109
Task variables, 110
Viewing in the Catalog, 115

432 Index

variablestyle option, 131
VCS, 381, 388

Build options, 414
Check in options, 413
Check out options, 413
Checking in non-OMNIS components, 395
Checking in OMNIS classes, 393
Creating a new project, 393
Deleting components, 411
Display options, 413
Labels, 406
Managing components, 408
Opening the VCS, 389
Renaming components, 412
Setting up a project, 390
Signing in to the VCS, 392
User Administration, 397

VCS Browser, 389
VCS Component services, 410
VCS Components

Getting info, 411
VCS Options, 413
VCS Reports, 414
VCS Revision History, 409
Version Control System, 388
Version Control System (VCS), 381
Version numbers, 394
vertgrid property, 156
vertscroll property, 168
View menu, 62
View menus, 22
Viewing class methods, 118
Viewing field methods, 119
Viewing properties, 88
Viewing system tables, 92
Viewing the classes in a library, 26
Viewing the contents of a project, 396
visible property, 165, 243
vscale preference, 82

weekstart preference, 82
Welcome library, 21

Creating your own, 356
Startup task, 356

What is OMNIS Studio?, 9
What’s This? help, 69
While programming constructs, 121
width property, 156, 165, 222, 243
Window Classes, 144

Background objects, 176
Creating a new window, 152
Creating windows using wizards, 144
Default template or wizard, 151
Fields and properties, 158
Methods, 190
Modifying windows and fields, 186
Opening windows from design mode, 150
Properties, 155
Using the design grid, 189
Window types, 153

Window fields
Adding tooltips to window objects, 175
Check boxes and radio buttons, 169
Display and inactive fields, 169
Entry and display field calculations, 169
Entry fields, 164
Field numbering and tab order, 174
Group boxes and scroll boxes, 174
Local fields, 169
Methods, 190
Page pane fields, 172
Picture fields, 173
Pushbuttons and button areas, 170
Shape fields, 174
Tab pane fields, 171
Tab strip fields, 172

Window fields and properties, 158
Window Fileds

External components, 185
Window menu, 65
Window menus, 193, 208
Window properties

Modeless enter data, 158
Window types, 153
Window wizards, 144
winshortcutkey property, 202
Wizards

$setup() method, 352
Changing the default menu wizard, 197
Changing the default report wizard, 234
Changing the default window wizard, 151
Creating a menu, 194
Creating a report, 231
Creating a window, 144
Creating your own, 350
Menu Wizard, 194
OMNIS Form Wizard, 144
OMNIS Report Wizard, 231

Index 433

SQL Form Wizard, 144
SQL Report Wizard, 231 zeroempty property, 168, 245

How to use this manual
The on-line documentation is designed to make the task of identifying and accessing
information about OMNIS Studio as easy and intuitive as possible.

You can navigate this document, or find topics, in a number of different ways.

Bookmarks
Bookmarks mark each topic in a document. To view the bookmarks in this
document, click on the Bookmark icon on the Acrobat toolbar or select the
View>>Bookmarks and Page menu item.

Click on an arrow icon to open or close a topic, and click on a topic name or double-click a
page icon to move directly to a topic.

Thumbnails
Thumbnails are small images of each page in the document. To view the
Thumbnails in this document click on the Thumbnails button on the Acrobat
toolbar, or select the View>>Thumbnails and Page menu item.

You can click on a thumbnail to jump to that page. Also you can adjust the view of the current
page by moving and/or sizing the gray page-view box shown on the current thumbnail.

Links
Links in this document connect related information or take you to a specific location in the
document. Links are indicated with blue italic text. To jump to a related topic, move the pointer
over a linked area (the pointer changes to a pointing finger) and simply click your mouse. Try
it!

To return to your last view or
location, click on the Go back
button on the Acrobat toolbar.

Browsing
You can use the Browse buttons on the Acrobat toolbar to
move back and forth through the document on a page by
page basis. You can also click on the Go Back to return to
your last view or location.

Find
You can find a text string using the Tools>>Find menu item. To find the next occurrence of the
text you can use the Tools>>Find Again option. If you reach the end of the document, you can
use the Ctrl-Home key to go to the beginning and continue your find.

Search
If you have the Acrobat Search plug-in (available under the Tools>>Search menu in some
versions of Acrobat Exchange and Reader), you can use the Studio Index to perform full-text
searches of the entire OMNIS Studio on-line documentation set. Searching the Studio Index is
much faster than using the Find command, which reads every word on every page in the current
document only.

To Search the Studio Index, select Tools>>Search>>Indexes to locate
the Studio Index (Studio.pdx) on the OMNIS CD. Next, select
Tools>>Search>>Query to define your search text: you can use Word
Stemming, Match Case, Sounds Like, wildcards, and so on (refer to the
Acrobat Search.pdf file for details about specifying a query). In the Search Results window,
double-click on a document name (the first one probably contains the most references). Acrobat
opens the document and highlights the text. To go to the next or previous occurrence of the
text, use the Search Next or Search Previous button on the Acrobat toolbar.

Grabbing Text from the Screen
You can cut and paste text from this document into the clipboard using the
Text tool. For example, you could copy a code segment and paste it into the
OMNIS method editor.

Getting Help
For more information about using Acrobat Reader see the PDF documents installed with the
Reader files, or select the Help menu on the main Reader menu bar.

	USING OMNIS STUDIO
	About This Manual
	Chapter 1--Introduction
	What is OMNIS€Studio?
	OMNIS Applications
	The OMNIS Executable
	OMNIS Libraries

	OMNIS Object Orientation
	Libraries and Classes
	Properties
	Methods
	Variables
	Instances
	Tasks
	Notation
	Messages
	Events
	Inheritance

	Chapter 2--OMNIS Tools
	Starting OMNIS Studio
	Context and View Menus
	Browser
	Hiding or Showing Classes in the Browser
	Saving the Browser Setup

	Component Store
	Changing the Default Classes
	Adding Objects to the Component Store

	Property Manager
	Changing Object Properties
	Sorting Properties in the Property Manager

	Notation Inspector
	Notation Inspector Toolbar
	Dragging Properties, Methods, and Notation

	Inheritance Tree
	Method Editor
	Interface Manager
	Catalog
	Data File Browser
	Standard Menus and Toolbars
	File menu
	Edit menu
	DDE and OLE (under Windows only)
	Find and Replace

	View menu
	Tools menu
	Window menu

	Getting Help
	Context-Sensitive Help
	What™s This? Help

	Shortcut Keys and Mouse Usage
	Launching OMNIS & Opening Libraries
	OMNIS Tools
	General
	Help
	Window and Report Design
	Moving and Sizing Objects
	List and Grid Fields
	Container Fields
	Property Manager
	Method Editor and Debugger

	Chapter 3--Libraries and Classes
	Libraries
	Library Properties and Preferences
	Default Library Name

	Classes
	Printing Classes

	Class Properties
	Default Classes
	The Startup Task
	System Tables

	OMNIS Preferences
	General Preferences
	Appearance Preferences
	Devices Preferences
	Page Setup Preferences
	Methods

	Chapter 4--Variables and Methods
	Data Types
	Character
	National
	Number
	Boolean
	Date Time
	Century Ranges for Dates

	Sequence
	Picture
	List
	Row
	Object
	Binary
	Item Reference
	Field Reference
	Nulls and Empty Values
	Formatting Strings and Input Masks

	Variables
	Declaration and Scope
	Parameter Variables
	Local Variables
	Instance Variables
	Class Variables
	Task Variables
	Hash Variables
	Adding a Variable
	Variable Values
	Viewing Variables in the Catalog

	Methods
	Viewing Class Methods
	Viewing Field Methods
	Adding a Method
	Adding Code to a Method
	Editing a Method
	Reordering and Renaming Methods

	Construct and Destruct Methods
	Event Methods
	Inherited Variables and Methods
	Code Classes
	Customizing the Method Editor

	Chapter 5--Data Classes
	Data Types
	Data Type Mapping
	Current Record Buffer

	Schema Classes
	Creating Schema Classes

	Query Classes
	Creating Query Classes

	Table Classes
	Creating Table Classes

	Creating SQL Classes Automatically
	File Classes
	Creating File Classes

	Search Classes
	Creating Search Classes

	Chapter 6--Window Classes
	Creating Windows using Wizards
	Default Window Template or Wizard

	Creating a New Window
	Window Types
	Window Properties
	Modeless Enter Data vs Enter Data Mode

	Window Fields and Properties
	Examining and Changing Field Properties
	Entry Fields
	General Properties
	Text Properties
	Appearance Properties
	Action Properties

	Password Entry Fields
	Local Fields
	Display and Inactive Fields
	Entry and Display Field Calculations
	Check Boxes and Radio Buttons
	Pushbuttons and Button Areas
	Tab Pane Fields
	Page Pane Fields
	Tab Strip Fields
	Picture Fields
	Group Boxes and Scroll Boxes
	Shape Fields
	Other Fields
	Field Numbering and Tab Order
	Adding Tooltips to Window Objects

	Background Objects
	Label and Text Objects
	Background Object Properties

	External components
	Showing External Components in the Component Store
	External Components Dialog
	Loading or Registering External Components
	Graphs
	Background External Components
	Writing your own External Components

	Modifying Windows and Fields
	Moving and Sizing Objects
	Using the Grid

	Window and Field Methods

	Chapter 7--Menu Classes
	Menu Types
	Creating Menus using Wizards
	Default Menu Template or Wizard

	Creating a New Menu
	Menu Line and Class Methods
	Menus and Code Classes

	Menu Properties
	Menu Icons
	Shortcut Keys
	Alt Shortcuts Keys under Windows

	Hierarchical menus
	Window Menus
	Popup Menus
	Context Menus
	Passwords and Menu Access
	Status Bar Help for Menus

	Chapter 8--Toolbar Classes
	Creating a New Toolbar
	Toolbar Controls
	Toolbar Properties
	Tool Properties
	Combo Box, Droplist, and Popup List Properties
	Popup Menu Properties
	Font List Properties
	Line, Color, and Pattern Pickers
	Toolbar Icons
	Tooltips

	Tool and Class Methods
	Toolbars and Code Classes

	Installing Toolbars
	Docking Areas

	Chapter 9--Report Classes
	Creating Reports using Wizards
	Default Report Template or Wizard

	Creating a New Report
	Report Tools

	Report Properties
	Page Setup Properties

	Report Field Types and Properties
	General Properties
	Text Properties
	Appearance Properties
	Action Properties

	Background Objects
	Report Sections
	Sorting and Subtotaling
	Subtotal Sections

	Section Properties and Positioning
	Page Mode
	Start Mode
	Record Spacing
	Positioning Sections

	Printing Reports
	Report Destination Dialog
	Printer
	Preview
	Screen
	Disk
	Clipboard
	Port
	File
	HTML
	Memory device
	DDE/Publisher Device

	Report and Field Methods
	Report and Printing Notation
	Print Devices and the Current Device
	Print Devices
	Global Printing Preferences
	Report Instances
	Page Setup Report instance properties

	Report Field and Section Methods
	Report Object Positioning
	Page layout

	Printing Errors

	Labels
	HTML Report Device
	Setting the HTML Device Parameters
	Sending Text or Data
	HTML Report Objects

	Ad hoc Reports
	Creating Ad hoc Reports
	Adding Columns or Fields
	Adding and Editing Sort Fields
	Adding a Query
	Multi-line Queries and Logic
	Adding Calculated Fields
	Modifying your Report
	Ad hoc Report Templates
	Re-using Ad hoc Reports
	Ad hoc report Notation

	Chapter 10--Lists and Grids
	Types of List and Grid Field
	List Variables
	Creating a List Variable
	Setting the Current List
	Defining Your List
	Building Your list

	Creating List and Grid Fields
	Dropdown lists
	List boxes
	Complex Grids
	Tree Lists
	Combo Boxes
	Popup Lists
	Check Lists

	Getting Data from a List or Grid Field
	Lists and Local Fields
	Searching in List and Grid Fields

	Chapter 11--Internet Classes
	Net Objects API
	E-Mail Object Class
	FTP Object Classes
	HTTP Object Class
	TCP/IP Object Classes

	Chapter 12--Accessing Your Database
	Connecting to Your Database
	Enabling Your Client Application
	Creating SQL Forms
	Printing Database Information
	Viewing and Inserting Data
	Data Access Wizards
	Session Wizard

	General Troubleshooting

	Chapter 13--Library Tools
	Component Library
	Modifying Classes and Fields
	Adding Classes and Fields
	Creating your own Wizards
	Showing Other Classes in the Component Store

	Welcome Library
	Icon Editor
	Creating your own Icons
	Editing an Icon Data File
	Storing Icons in a Library
	Embedded System Colors
	Transparent Color
	Old OMNISPIC Data Files
	Custom Cursors
	Cursor Hot Spot
	Cursor Properties of Objects

	Importing and Exporting Data
	Data Formats
	Exporting Data
	Importing Data
	Importing Data into List and Row Variables
	Exporting Data from List and Row Variables
	Exporting Data from a Report
	Translate Input/Output
	Build export format list

	Checking Libraries
	Retokenizing Libraries
	Private Libraries
	Locking Classes

	Passwords and Security
	Setting Up Passwords
	Restricting Access to Menus and Toolbars
	Controlling Access using Methods

	Multi-library Projects
	Localizing your Application
	Exporting the Text in your Library
	Exporting to an OMNIS Data File
	Exporting to a Text File
	Translating the Export Data File
	Translating the Export Text File
	Importing Translated Text

	Localizing OMNIS
	Storage of Localization Data
	The Localization Data
	Days of Week
	Months of Year
	Separators
	Standard Text Strings
	National Sort Ordering

	The natcmp() function
	User Interface
	Notation

	Chapter 14--Version Control
	Compatibility with OMNIS 7
	Opening the VCS
	Setting up a Project
	Creating a session
	Signing in to the VCS for the first time
	Checking in OMNIS Libraries and Classes
	Version Numbers

	Checking in non-OMNIS Components
	Viewing the Contents of a Project

	User Administration
	Adding and Removing Users

	Using the VCS
	Signing in to the VCS
	Checking or Copying out Components
	Checking in or Unlocking Components
	Building Projects
	System Tables
	Labels
	Sharing Components between Projects

	Managing Components
	Granting User Privileges for Components
	Revisions
	Component Services

	Setting VCS Options
	Display Options
	Check Out Options
	Check In Options
	Build Options

	Reports

	Chapter 15--Deploying your Application
	Serialization
	Changing the Serialization Dialog

	How to use this manual
	Bookmarks
	Thumbnails
	Links
	Browsing
	Find
	Search
	Grabbing text from the Screen
	Getting Help
	Start manual

